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Abstract

While a large number of partnerships form as defensive measures in response to fierce

global competition, distress over future uncertainties, and a lack of alternative methods to ensure

continued survival, synergistic partnerships are characterized as being cooperative learning

experiences that benefit all the parties involved. The best partnerships are those that develop into

strategic alliances helping to capture and create value that would otherwise have been difficult to

realize if not for the mutually shared goals and resources of the partnership. In this paper, we

discuss how government, industry, and academia are able to converge upon a new maintenance

paradigm aimed at benefiting our nation's military forces. In particular, representatives from all

three domains are working together to determine how condition-based maintenance (CBM) can

best serve U.S. Army aviation and bolster our soldiers engaged in the war against terrorism.

Described as is a set of maintenance processes and capabilities aimed at improving U.S. Army

aviation fleet's operational readiness and reducing soldiers' maintenance burden, CBM leverages

advanced technologies to help generate enhanced diagnostics for key components on-board a

select number of AH-64 Apache, UH-60 Blackhawk, and CH-47 Chinook helicopters. The near

real-time assessment of data from the embedded sensors seeks to provide the U.S. Army with a

more effective and efficient way to conduct maintenance based on need rather than scheduled

periods, the capability to perform supply chain actions in a more proactive manner, and the

ability to optimize the competing demands of warfighting and planned maintenance. In short,

CBM attempts to improve the way the U.S. Army approaches maintenance, transforming it from

the industrial age of the 20th Century into the information age of this new century. We believe

that through the successful partnering of government, industry, and academia, we will be able to

exemplify how CBM is demonstrating business transformation for the U.S. Army.
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Chapter 1: Introduction

"Partnership. n. A relationship between individuals or groups that is

characterized by mutual cooperation and responsibility, as for the achievement

of a specified goal."

--American Heritage Dictionary

Over the past several years, the Operations Research of Excellence (ORCEN) in the

Department of Systems Engineering at the United States Military Academy (USMA) has worked

with the U.S. Army Aviation and Missile Command (AMCOM) on research projects aimed at

enhancing our military aviation capabilities. Previous works by Major Mark Gorak [1] and

Major Stephen Henderson [2] have helped to lay the foundation for the current partnership

between government, industry, and academia that aims to improve the U.S. Army's helicopter

maintenance paradigm. Under the direction of the AMCOM, support of the Westar Aerospace

and Defense Group, and academic research focus of the ORCEN, we continue to strengthen our

mutual interest in determining how CBM can best advance our military into the information age

of the 21 st Century.

We approached this year's joint venture as a mutually beneficial arrangement that would

generate not only tangible results for our partners, but also relevant and significant studies for us

as military operations research faculty members. Being new to the partnership, we employed the

Systems Engineering and Management Process (SEMP) that we teach to cadets at USMA-a

structured problem solving process useful in the design of multidisciplinary, large-scale, and

complex engineering problems graphically portrayed in Figure 1-to ensure a swift and prompt

integration of appropriate interests, capabilities, and resources [3]. While the application of the

SEMP can vary significantly from project to project, reflecting local practices and expectations,

we believe that such variance often provides opportunities to adopt new ideas and new ways of
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approaching an issue. As a new maintenance paradigm that leverages advanced technologies and

introduces new processes, CBM is an ideal project for the application of the SEMP.

Environment

Design&
Analsis '01a,

Alternatives r\Generation

Modelingu &
iAnalysis

Descriptive Problem Decision Normative
Scenario Definition Engineering Making Scen .rio

Needs Problem Atereative
Analysis Design Scoring

Value System
Cat Design Decision

Implementation

Planning forlvn ro

Extin c ut n sharec

Assessment <
&ControlI

( Assessment & Feedback -

Figure 1: The SEMP Framework [4]

Chapter 2: Using the SEMP to Foster Mutual Cooperation

As a design methodology and problem solving framework, the SEMP provides us with a

coherent and structured process for defining and agreeing on shared goals and objectives,

nominating areas for research focus, and selecting appropriate analytical tools, processes, and

methodologies for achieving project deliverables. We used the problem definition phase of the

SEMP to ensure our unique skills and analytical capabilities would be utilized in ways that best

complements our partners' expectations. Much of this initial phase was spent ironing out project

deliverables that truly satisfied the partners' needs and requirements. This initial phase of the

project also helped foster mutual cooperation in the following ways:
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"* Alleviated much of the anxiety with getting the initial statement of work (SOW) produced,

especially in terms of addressing milestones, timelines, and project deliverables;

"* Provided a deliberate and methodical method for generating common understanding of

capabilities and limitations among partners;

"* Prevented partners from feeling locked into a set of pre-defined objectives and goals,

especially for projects where dynamic exchange is to be expected;

"* Empowered ORCEN analysts with the capability of refining the initial SOW into a project

contract that they can take ownership of with agreement from the partners;

"* Encouraged partners to communicate to one another their expectations and goals,

"* Allowed for partners to come up with a SOW based on system needs, common interests, and

shared responsibilities.

Furthermore, the growth of such mutual cooperation diminished the likelihood that the

CBM partnership would turn into a short-lived reactive association and increased the chances of

it developing into a proactive partnering, and perhaps even a strategic alliance. Table 1 provides

examples and characteristics of the various types of partnerships that exist in government,

industry, and academia. While the use of the SEMP does not guarantee the creation of longer-

term alliances, it does help to communicate common expectations and shared responsibilities

that, in turn, help avert purely reactive associations from forming.

Table 1: Partnerships Types and Characteristics

Goverinment lIndustry Academia
Reactive Associations Political Expediency Fierce Competition External Locus of Control

Military Necessity Fear of Uncertain Future Credentialing

Proactive Partnering Balance of Core Competencies Focus on Core Competencies Internal Locus of Control

Longer-Term Partnerships Longer-Term Mergers Fruitful Collaboration

Strategic Alliances Shared Resources Common Vision Mutual Respect
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Chapter 3: A Roadmap for Getting the Most out of a Partnership

Thriving partnerships and successful project deliverables are predicated upon the four

key dimensions of preparation, promotion, implementation, and documentation. Figure 2

illustrates that these four dimensions are not mutually exclusive and depicts the elements that

comprise each of the dimensions. Central to overall success is the organizational commitment to

the program. While it is difficult to predict how committed our government will be to CBM in

the future, AMCOM's current level of effort and focus bodes well for its near-term prospects.

Not only has AMCOM provided considerable resources in the promotion of CBM, both in terms

of time as well as funding, it has formulated clear objectives and goals for CBM. As a result,

AMCOM has helped to establish a common vision for the direction of CBM and has brought

industry and academia together to work on preparing, documenting, and implementing a viable

strategy for how to best incorporate CBM into the military.

Figure 2: Functional Elements of Successful Products and Partnerships [5]
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With the substantial weight of the vast resources under its charge, AMCOM has been the

key governmental agency overseeing the direction of CBM. AMCOM has taken steps to

advance partnerships with industry and academia so that it is able to leverage the core

competencies distinctive within each of these two domains. Industry tends to possess valued

competencies such as speed, responsiveness, efficiency, practical expertise, and entrepreneurial

thinking. Academia, on the other hand, tends to maintain valued competencies such as research

capabilities, technical expertise, and advancement of new ideas. Therefore, all three domains

enter the CBM partnership with the understanding that each is able to focus on its own unique

competencies-the government with its resources and vision, industry with its speed and

practicality, and academia with its theories and strength in conducting research.

In keeping with this common understanding pertaining to the CBM partnership, the

ORCEN agreed to undertake project deliverables that did not fall on the critical path of CBM

advancement. As a result, the ORCEN was able to conduct research that ranged from answering

specific questions, such as how to leverage simulation capabilities into the CBM paradigm (see

Exhibit 1-Rapidly Attaining Low Hanging Fruit), to initiating a pilot study on initial CBM

helicopter data (see Exhibit 2-Delivering on Unique Skill Sets). Additionally, the ORCEN was

able to integrate information on CBM from both government agencies as well as corporate

participants to help better articulate the intended vision for this new military maintenance

paradigm (see Exhibit 3-Driving Toward Greater Mutual Understanding). Lastly, the ORCEN

was able to collaborate with Westar Corporation, a key industry partner, on developing new and

more meaningful metrics under a CBM paradigm (see Exhibit 4-Researching Common Areas

of Interest). All four of these deliverables represent distinct research projects the ORCEN has

undertaken to help contribute to the advancement of CBM as an Army transformation initiative.
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Chapter 4: The Promising Path Forward for CBM

Not only does CBM provide an entirely different way of conducting maintenance for the U.S.

Army, it introduces a great number of potential research partnerships between government,

industry, and academia. Areas that lend themselves directly to further study include production

operations management (e.g., supply chains, inventory control, lean thinking, and just-in-time

processes), quality control (e.g., six sigma, 5S, root cause analysis, and failure modes effects

analysis), statistical methodologies (e.g., hypothesis testing, multivariate analysis, pareto

analysis, and stochastic analysis), continual process improvements (e.g., theory of constraints,

value stream mapping, tear-down analysis, value engineering, and benchmarking), and problem

solving techniques (e.g., design of experiments, modeling and simulation, data mining, and data

farming). Under the watchful direction of the government, speedy and efficient application of

resources from industry, and varied ideas and research focus of academia, CBM provides a large

wealth of possibilities for continued proactive partnerships. Figure 3 illustrates the synergistic

growth of knowledge that can occur as a result of the successful partnership of all three domains.

Knowledge Growth through CBM Partnership

AcademiaIndustry

Government

Growth and Expansion of
Knowledge on CBM through
Partnership of Government,

Industry, and Academia

Figure 3: Growth and Expansion of Knowledge through the CBM Partnership
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A positive Matthew Effect is likely to result from the knowledge gained through the CBM

partnership [6]. As more collaborative engagements between the partners develop, the more

trust builds among government, industry, and academia. As this trust grows, the greater the

confidence each partner will have in each other's capabilities. Each domain's individual

contribution will help to add not only to the existing body of knowledge pertaining to CBM, but

more importantly, will help to catalyze the other domains into pursuing further analysis. As a

result, new systems and processes, improved diagnostics and prognostics, and enhanced control

mechanisms and maintenance approaches will likely result from the study of CBM. And as a

consequence, the U.S. Army becomes the key beneficiary from the growth and expansion of

such knowledge.

Chapter 5: Conclusions

According to Foley, "The means of production is less and less the sweat of our brow, or

the leveraging of our muscle power with steam or water or electric power, or mindless repetition

of work on the assembly line. Rather, the means of production increasingly is the leveraging of

our intellectual power with computers" [7]. It is our belief that our partnership on CBM is

helping to leverage computational power and technological advances to make the task of

maintenance more effective and more efficient for our military forces. We also believe our

partnership on CBM is helping to advance the tenets of Army Transformation. As former Army

Chief of Staff General Eric Shinseki and former Army Secretary Thomas White have stated:

"Soldiers on point for the nation transforming this, the most respected army in the world, into a

strategically responsive force that is dominant across the full spectrum of operations . . . The

Army's Vision [consists of] People, Readiness, Transformation-and our efforts to change
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quickly into a more responsive, deployable, agile, versatile, lethal, survivable, and sustainable

force" [8]. The introduction of the CBM paradigm will help to promote military transformation,

and the partnership of government, industry, and academia is helping to demonstrate how we can

leverage each domain's unique skills and capabilities towards the fulfillment of the Army Vision

in this new century.
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Appendix A: List of Abbreviations

A
AH Attack Helicopter
AMCOM U.S. Army Aviation and Missile Command

C
CBM Condition-Based Maintenance
CH Cargo Helicopter

0
ORCEN Operations Research Center

S
SEMP Systems Engineering and Management Process
SOW Statement of Work

U
UH Utility Helicopter
USMA United States Military Academy

#S

5S Sort, Set In Order, Shine, Simplify, Sustain
6cy Six Sigma

*This table is sorted alphabetically
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Exhibit 1: Rapidly Attaining Low Hanging Fruit

White Paper 17 August 2005
Operations Research Center of Excellence Major Ernest Wong
Department of Systems Engineering U.S. Army
United States Military Academy ernest.wong@usma.edu
West Point, NY 10996

How to Leverage Computer Simulation in Condition-Based Maintenance:

Capabilities are Determined by the Availability and Accessibility of Data

Executive Summary

Many companies are discovering that they can leverage computer simulation to help

improve their competitiveness and help achieve cost savings. Simulation modeling is becoming

an important enabling technology that is enhancing numerous functions such as engineering and

operations, logistics, research and development, risk analysis, process design, and information

systems. Government agencies are also adopting computer simulation techniques to assist in

areas such as accident analyses, operator training, environmental protection, and efficiency

studies.

In the past, tailor-made computer simulators were developed from scratch and used

almost exclusively by mathematicians and programmers who held the expertise to utilize and

understand such time-consuming and expensive systems [15]. As computers have gained greater

processing power at more affordable prices, however, a greater number of users are taking

advantage of simulation capabilities. As a result, a greater number of companies are now able to

leverage computer simulation to tackle even more demanding problems. And as a greater

number of applications are being developed, computer simulation is helping to provide benefits

such as [10, 15]:

* Higher quality manufacturing through reduced costly mistakes
* Reduced risk and improved safety
* Shorter commissioning time of new products
* Increased operational capacity and usage
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* Savings in training costs of personnel
* Extension of equipment life
* Increased confidence in major decisions

Since these benefits all appear to tie directly to the goals of condition-based maintenance

(CBM), the question of whether or not computer simulation makes sense for the U.S. Army

aviation's new maintenance paradigm ought to be apparent (refer to page 3 for CBM goals). Not

only does computer simulation have the potential to improve many functions within CBM, it also

has the ability to help promote the CBM vision of achieving optimal operational readiness of the

aviation fleet. Consequently, rather than focusing on trying to answer whether computer

simulation modeling can be used to enhance CBM, it is perhaps more worthwhile to focus on

how to best introduce computer simulation modeling into the CBM process in the most effective

manner. This paper presents three major alternatives for addressing how to introduce computer

simulation techniques into CBM:

"* Develop computer simulation tools in-house that are tailored specifically to U.S.
Army Aviation and Missile Command (AMCOM) engineering requirements

"* Use existing commercial simulation software tools, such as Crystal Ball and Palisades
Decision Tools, for analysis of existing data

"* Outsource the modeling functions to external agencies with established dependability,
responsiveness, and expertise in computer simulation

Although these three alternatives are very distinct courses of action, there should be no

reason to think that each one cannot play a role in advancing the CBM paradigm. It is very

likely that the best decision for incorporating simulation into CBM will include elements of all

three alternatives. But regardless of the decision, it is important to recognize that the success of

computer simulation techniques in CBM depend largely on the availability and accessibility of

suitable data.

Introduction--What Are Computer Simulations and What Can We Gain from Them?

Computer simulations are designed to provide insights into the dynamic behavior of

systems as they vary over time [8, 16]. Traditionally, the formal modeling of systems has been

via mathematical models that attempt to find analytical solutions to problems based on a set of

18



defined parameters and initial conditions. Computer simulations are often used as adjuncts to

modeling systems in which analytical solutions are not possible or those that are very difficult to

answer. There are many different types of computer simulation, but the common feature they all

share is their attempt to generate a sample of representative scenarios for a model in which a

complete accounting of all possible states of the model would be prohibitive or impossible [9,

13].

One of the principal advantages with computer simulation is its capacity to model and

represent the behavior of complex systems over time in a rapid, convenient, and cost-effective

manner [14, 15]. Without computer simulations, analysts would have to rely upon sophisticated

mathematical theories, or test actual devices and observe how they behave under controlled

conditions to learn about and make improvements in the design or process [4]. Another

important feature of computer simulation is its ability to emulate every significant step that

occurs in a process and identify significant interactions between resources in a process. This

enables analysts to gain insights about the impact of potential decisions or changes on that

process. A good simulation model equips the analyst with a visual representation of what will

happen in the process if changes are made to it, and it gives the analyst a record of those

changing system performance measures as they are examined under various scenarios [ 13, 14].

Simulation has been used most extensively in situations where the real system cannot be

used for experiments. Computer simulation is also an appropriate analysis tool when [3, 15]:

* The real system does not yet exist
* The experiments would involve high economical risks
* The experiments would be dangerous
* The experiments cannot be controlled or carried out
* The process variables are too difficult to be measured through experimentation
* The measurements are too noisy
* The experimenting with the real system is expensive
* The system cannot be easily accessed
* The dynamics and response of the system under actual conditions are too slow
* The proper conditions for the experiment are difficult to fuilfill
* The variables of the system cannot be easily manipulated in an experiment
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Appendix A lists both a wide-range of industry sectors employing computer simulation

techniques as well as a number of practical applications that have been developed through

computer simulation.

Why Does Computer Simulation Make Sense for CBM?

Computerized dynamic simulation models are useful for verification of both conceptual

and detailed process designs [15]. Because they make in-house pre-testing of automation

systems, user interfaces, and operational procedures possible in a relatively quick, efficient, and

economical manner, computer simulation appears to be an ideal tool for enhancing the CBM

paradigm. According to DoD Directive 5000.1, the stated objectives of CBM are [5, 12]:

* Predict equipment failures based on real-time or near real-time assessments of
equipment condition obtained from embedded sensors

* Reduce maintenance down time
* Increase operational readiness by repairing or replacing system components based on

actual condition of components rather than on a scheduled or time-phased basis

As such, computer simulation can help to facilitate in the development of both enhanced

diagnostics as well as predictive prognostics which serve to "improve maintenance agility and

responsiveness, increase operational availability, and reduce life cycle total ownership costs" [7].

Because the effectiveness of computer simulation models is contingent upon large amounts of

data, the profuse amount of information generated from the embedded sensors across the aviation

fleet will serve to provide even more legitimacy to both the models and results of CBM computer

simulations. Furthermore, benefits from computer simulation need not be limited to the

operations, support, and sustainment phases of the life cycle for aviation assets. From system

acquisition to retirement and disposal, computer simulation can help provide robust analysis to

nearly all phases of the Total Life Cycle Systems Management--especially when faced with

decreased testing budgets, more complicated systems, more software-intensive systems, more

upgrades to existing systems as part of "evolutionary procurement," and greater interest in

system reliability, availability, and maintainability [2].
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What Challenges are Associated with Incorporating Computer Simulation into CBM?

There are, however, numerous costs involved with the introduction of computer

simulation modeling that we need to be cognizant of. These costs include [1, 10, 16]:

* Computer hardware--despite steady reduction in prices
* Simulation software testing, development, and maintenance
* Software training
* New business process training
* Additional labor needed to attain proficiency in new software and business processes

* Culture change implementation

Although the introduction of computer simulation is not intended to replace other forms of

analysis, it may initially be difficult to convince analysts to immediately employ new modeling

techniques that they may not be familiar with and have relatively little confidence in.

It is also important to consider the limitations of simulation modeling. Since all

simulation models contain simplifications and assumptions that limit their accuracy, computer

models attempting to capture some aspect of reality must, therefore, be imperfect and incomplete

as well [9]. Consequently, computer simulations will not eliminate all faults or failures in the

aviation fleet. The diagnostic and prognostic capabilities derived from simulation modeling are

only as useful as the data from which the models originate. Finally, even though simulation can

help to reduce defects through statistical process controls such as Six-Sigma [13, 16], simulation

will not fully replace operational testing [2]. Oftentimes, simulation works best as a modeling

tool that helps complement, enhance, and substantiate other analytical methods.

How Do We Best Introduce and Leverage Computer Simulation in CBM?

There are essentially three distinct alternatives we can consider to implement computer

simulation within CBM. The pros and cons for each alternative are provided below:

* Develop computer simulation tools in-house that are tailored specifically to U.S.
Army Aviation and Missile Command engineering requirements (Develop In-House):
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"+ Simulation tool conforms exactly to specified requirements and

"+ Developed so that there will be less apparent need for training on user interfaces

- With software design and testing, takes arguably the longest time to implement

- High upfront development costs

- Unlikely to be flexible enough to exploit unspecified requirements

- Likelihood of product obsolescence

Use existing commercial simulation software tools, such as Crystal Ball and Palisades
Decision Tools, for analysis (Use Existing Commercial Tools):

"+ Commercially available with demonstrated use within industry

"+ Available software support and expert guidance

"+ Multiple user training opportunities available

"+ Relatively inexpensive compared to in-house development

"+ High likelihood of being able to keep up with product upgrades

"+ Conformance with industry and academic standards

- May not be entirely compatible with existing data

- Models may not be congruent with existing paradigms and analytical frameworks

- Requires operator training

- May not be proficient enough to exploit the software capabilities

* Outsource the modeling functions to external agencies with established dependability,
responsiveness, and expertise in computer simulation (Outsource to Experts):

"+ Able to leverage existing expertise in industry or academia for immediate results

"+ Limited long-term software development, sustainment, and training costs

"+ Possibility of forming long-term relationships with proven partners

- In the long run, may not be able to capture and reproduce demonstrated capabilities

- May require time-intensive reverse engineering to verify conclusions

- Requires a certain degree of trust with external agencies

- Potential to become reliant on proprietary software
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A helpful way to compare these three potential solutions is to examine the pros and cons

of each alternative in an evaluation matrix format [17], as shown in the table below:

Table 1: Evaluation Matrix to Help Decide Best Way to Leverage Simulation Capabilities

Alternatives:

Develop In- Outsource to

CommercialHouse Experts
Criteria: 

Tools

Ability to Tailor Software Specifications ... 0 0

Cost --- ... ...

Time to Develop Software --- ... ...

Amount of Required Training & Education --- ... 0

Time to Implement Capabilities --- ... ...

Compatibility with Existing Data ... --- 0

Congruence with Existing Paradigms ... --- 0

Verification of Simulation Results ... ... ---

Flexibility to Adapt to Unknown Requirements --- ... 0

Likelihood of Product Obsolescence --- ... ...

Reliance on Long-Term Support Relationships 0 ... ---

Legend: +++=Positive O=Neutral --- =Negative

Clearly all three alternatives have their advantages and disadvantages, and it is highly

unlikely that a single alternative will provide the best way to implement computer simulation for

CBM. What this chart does provide, however, is a way to determine how to gradually introduce

computer simulation to different portions of the CBM paradigm. As such, the best solution is

probably to simply choose a particular alternative for a portion of the CBM process that satisfies

its specific characteristics, needs, and requirements. One advantage that such a gradual approach

provides to CBM is the ability to incrementally learn from what works and what doesn't.

Another advantage to this diversified approach is that as more work is conducted via computer

simulation, analysts will increasingly learn more about the capabilities and limitations of

simulation. As a result, they will be able to become both better consumers of simulation tools as

well as better advocates for the future use and implementation of simulation capabilities.
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Conclusion-What Conditions Make it Possible for CBM to Exploit Computer Simulation?

Computer simulation is a very powerful tool that can be successfully applied to nearly all

areas of CBM and nearly all stages of Total Life Cycle Systems Management. It can help to

save considerable time and significant costs in the development of effective diagnostics and

prognostics for improving the overall readiness of the U.S. Army aviation fleet while

simultaneously reducing the maintenance man-hours currently imposed on our soldiers.

However, it is the accessibility and availability of suitable data that will determine what

computer simulation capabilities will be used to help enhance the CBM paradigm [10]. Limited

data that is cumbersome to retrieve severely hampers the value of not just computer simulation,

but just about all analytical techniques. Under the current aviation maintenance paradigm, only a

small percentage of the existing data is being exploited to better improve fault detection and

optimize the operational readiness of our aviation fleet. Accordingly, it is not hard to image that

a disproportionately small portion of our analysts' time is being used for actual analysis while

the bulk remainder of their time is spent simply trying to gain access to the appropriate data and

data sources. A data architecture that can help to remedy this shortcoming will serve as a key

development in providing CBM with its enhanced analytical promise.

It will, however, take time to train and educate analysts on the robust capabilities of

computer simulation. Yet, once the CBM architecture begins to materialize, computer

simulation will almost assuredly play a vital role in the program. Furthermore, a positive

Matthew Effect [11] is likely to develop between simulation capabilities and CBM outcomes.

As more valid data becomes readily available and accessible, the more confidence there will be

in the construction of the simulation models that draw upon the data; the better the models

become, the more certainty there will be in the simulation results; the better the simulation

results become, the more trust there will be in the recommendations inferred from those results;

the better the conclusions that can be applied to the aviation fleet, the better the CBM program

will become; and the better the program becomes, the more CBM can demonstrate that is able to

improve aviation maintenance, increase warfighting readiness, and save taxpayer dollars.

Consequently, it is not too difficult to image how a virtuous cycle begins to cultivate among

simulation capabilities and the CBM paradigm for U.S. Army aviation maintenance.
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Exhibit 1, Appendix A:

Table 1. Industrial Uses and Applications of Computer Simulations

Industry Sectors Simulation Applications

Aircraft Advanced Control of Manufacturing

Avionics Product Simulation

Biomedical Rapid Prototyping

Chemicals Efficiency Studies

Construction, Civil Waste Minimization

Financial Business Process Models

Flight Training Financial Analysis

Food & Beverage Ordering Policies for Inventory System

Hospitals Human Aspects, Ergonomics

Insurance Environmental Protection

Machine Tools Life Cycle Analysis and Prediction

Mechanical Engineering Accident Analysis

Medical Process Design and Engineering

Metals Processing Logistics

Military Research and Development

Minerals Risk Analysis and Risk Mitigation

Oil & Gas Exploration Software Testing

Paper & Pulp Training of Users / Operators

Pharmaceuticals Reengineering of Business Processes

Power Generation Service Organization Design

Rubber & Plastics Communication Network Protocols

Ship Building

Space Exploration

Transportation

Utilities

Table derived from SimServ Website: http://www.sim-serv.com/simulation.php. Additional

data taken from Law, A., and W. Kelton. (2000). Simulation Modeling and Analysis, 3 rd ed.

Boston: McGraw Hill.
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ABSTRACT

This thesis provides a stochastic modeling tool to assist in the component selection

process for Army Aviation's Condition-Based Maintenance Plus (CBM+) program. The CBM+

program uses measurements from sensors to monitor the health (resistance to failure) of

components replacing the Legacy process of scheduled inspections and maintenance. This work

is in conjunction with the Operations Research Center of Excellence (ORCEN) at the United

States Military Academy to assist in providing insight for the U.S. Aviation and Missile

Command (AMCOM). AMCOM is currently developing CBM+ from its current early stages

into a program that will revolutionize maintenance procedures for the Army's helicopter fleet.

The subsystem selected for this thesis is the AH-64/UH-60 T701C Turbine Helicopter

Engine. The times to occurrences to serious diagnostics symptoms requiring maintenance action

were collected from the Army's Aviation and Missile Research, Development, and Engineering

Center (AMRDEC). Data analysis indicates that a nonhomogeneous Poisson process

appropriately models the times between the occurrences of serious diagnostic symptoms for this

engine. A Microsoft Excel simulation utilizing Crystal Ball version 5.5 compares an engine

monitored by CBM+ versus the traditional Legacy system of maintenance. This simulation

provides information on diagnosed faults, mission aborts, repair times, false positives, and

logistical implications.

This simulation is generic and can be used in comparing CBM+ candidate components

for future inclusion into the CBM+ program. Results suggest that the sensor's false alarm rate

and the reliability/maintainability of the CBM+ sensor are important factors to consider. Since

the CBM+ sensor is continually monitoring a component's condition, a modest sensor

probability of detection of an impending failure can result in fewer mission aborts than those that

arise in the Legacy system. The ability and speed of the logistics system to recognize and

respond to sensor measurements indicating impending failure affect the potential success of

CBM+.
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EXECUTIVE SUMMARY

U.S. Aviation and Missile Command (AMCOM) has initiated a program to monitor

Army helicopter component health (resistance to failure) through a network of sensors installed

on aircraft. This sensor network forms the foundation for a maintenance philosophy known as

Condition-Based Maintenance Plus (CBM+). This thesis provides a stochastic modeling tool to

assist in the component selection process for Army Aviation's CBM+ program. This work is in

conjunction with the Operations Research Center of Excellence (ORCEN) at the United States

Military Academy to assist in providing insight for the U.S. Aviation and Missile Command

(AMCOM). AMCOM is currently developing CBM+ from its current early stages into a

program that will revolutionize maintenance procedures for the Army's helicopter fleet. The

CBM+ program uses measurements from sensors to monitor the health of components replacing

the Legacy process of scheduled inspections and maintenance. Furthermore, Army Aviation's

CBM+ program is a collection of maintenance processes and capabilities derived, in large part,

from real-time assessment of weapon system condition, obtained from embedded sensors and/or

external tests and measurements. Currently, aircraft parts are replaced based on results of

scheduled maintenance inspections of the Legacy maintenance system. Under CBM+, the

condition of components will be monitored and the components replaced when sensors show

indications of possible failure and extended wear.

Not all components will benefit from being part of the CBM+ program. Stochastic

modeling and simulation are used to develop a tool to assist in the component selection process

for CBM+ program. This work is in cooperation with the Operations Research Center of

Excellence (ORCEN) at the United States Military Academy supporting AMCOM.

The subsystem selected for this thesis is the AH-64/UH-60 T701C Turbine Helicopter

Engine. The times of occurrences of serious diagnostics symptoms requiring maintenance action

were collected from the Army's Aviation and Missile Research, Development, and Engineering

Center (AMRDEC) and analyzed to provide input to the development of a simulation model.

The resulting Microsoft Excel simulation utilizing Crystal Ball version 5.5 compares an engine

monitored by CBM+ versus the traditional Legacy system of maintenance. The output of the

simulation provides information on diagnosed faults, mission aborts, repair times, false positives,

and logistical implications.
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This simulation is generic and can be used in comparing CBM+ candidate components

for future inclusion into the CBM+ program. Results from the simulation study suggest that

since a sensor is continually monitoring the component, it doesn't have to be highly accurate in

diagnosing impending failures in order to produce fewer mission aborts than the Legacy

maintenance system. However, it is extremely important to minimize the number of false

positives when using CBM+ sensor otherwise the Legacy maintenance system outperforms

CBM+ with respect to total inspection/repair time.
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I. INTRODUCTION

A. CONDITION-BASED MAINTENANCE PLUS

U.S. Aviation and Missile Command (AMCOM) is interested in monitoring Army

helicopter component health through a system of sensors and monitors placed onboard aircraft.

Component health is defined as a component's ability to provide the proper mechanical action it

was designed and engineered to accomplish. This program is in response to a Department of

Defense (DoD) strategy which states that all services should seek "operational supportability" in

system development and demonstration. (DoD 5000.2, 2003) Over the past year, approximately

twenty different aircraft components were monitored by sensors; the components are installed on

different types of airframes. The AH-64 Apache, UH-60 Blackhawk, and CH-47 Chinook were

selected since these are the aircraft that are included in the Army's force modernization plan.

This sensor network forms the foundation for a maintenance philosophy known as Condition-

Based Maintenance (CBM).

According to Defense Acquisition Guidebook dated 20 December 2004 "the goal of

CBM is to perform maintenance only upon evidence of need. CBM tenets include: designing

systems that require minimum maintenance; need-driven maintenance; appropriate use of

embedded diagnostics and prognostics through the application of Reliability-Centered

Maintenance (RCM); improved maintenance analytical and production technologies; automated

maintenance information generation; trend based reliability and process improvements;

integrated information systems providing logistics system response based on equipment

maintenance condition; and smaller maintenance and logistics footprints." (Department of

Defense, 2003) A more specific form of CBM exists and that is known as Condition-Based

Maintenance Plus (CBM+). CBM+ "expands on these basic concepts, encompassing other

technologies, processes, and procedures that enable improved maintenance and logistics

practices. CBM+ can be defined as a set of maintenance processes and capabilities derived, in

large part, from real-time assessment of weapon system condition, obtained from embedded

sensors and/or external tests and measurements. The design specifications should identify early

teaming with systems engineering to clearly define and understand the operating envelope in

order to design in Built-In-Test (BIT) and Built-In-Self-Test (BIST) mechanisms including false

alarm mitigation." (Department of Defense, 2006) False alarm mitigation is accomplished by
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using sensor equipment that provides for enhanced capability for fault detection, isolation, and

repair time minimization. The purpose of this enterprise is to provide cost-effective warning of

potential catastrophic failure or mission abort.

AMCOM's mission statement is "to transform Army Aviation maintenance to Condition-

Based Maintenance, by converting condition and usage data into maintenance actions".

(AMCOM Web Site, 2006) Currently, aircraft parts are replaced based on a system of scheduled

maintenance inspections. CBM+ would drastically change this system. Under CBM+,

components would now be monitored and replaced only when sensors show indications of ill

health or possible imminent failure and extended wear. AMCOM contacted the Operations

Research Center of Excellence (ORCEN) at the United States Military Academy to assist in

providing additional insight into this important area of research. This thesis is produced in

conjunction with ORCEN in an effort to provide AMCOM with a stochastic model and

simulation that will be useful in aiding decisions concerning the potential introduction of aircraft

components to CBM+.

Currently, only passive sensors are employed on Army aircraft. After each flight the

crew chief downloads data from the sensors onto a recording device. The crew chief then

transfers the data to a laptop computer for that specific aircraft. All of the crew chiefs' laptop

computers feed into a desktop computer at the unit's Production Control office. The Production

Control office is the controlling node for all maintenance activities of an Army Aviation unit.

B.F. Goodrich contact teams are at specific sites and are assisting these Production Control

offices with interpreting the data. Based on these interpretations these data can trigger repair or

replacement of components. The data are then sent from the Production Control office to a data

warehouse which is currently undergoing construction by the Westar Corporation. From this

data warehouse AMCOM reviews the data and monitors the development of CBM+.

B. OBJECTIVES

The objective of this thesis is to utilize stochastic modeling and simulation to aid in

determining which aircraft components should be included in CBM+ Microsoft Excel 2003 and

Crystal Ball version 5.5 were chosen as the software package for the simulation of this model.

(Ragsdale, 2004) Crystal Ball version 5.5 is an Excel-based Monte Carlo simulation application

produced by Decisioneering Incorporated. The components that have been selected to use
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CBM+ were chosen as a test bed to make sure that the CBM process results in a decrease of the

maintenance burden on the soldier, an increase in platform availability and readiness, and a

reduction of operations and support costs. (Brown, 2005) Since AMCOM is in the earliest

phases of CBM+, it acquired sensors to track and monitor aspects that its engineers hypothesized

would have a useful probability of providing the most beneficial results in terms of improving

operational readiness and reduction of maintenance related costs. Now that results have been

generated there needs to be a component selection system established that will be used when

CBM+ is implemented across the Army aviation fleet.

The simulation used in this thesis compares a CBM+ monitored airframe to a non-CBM+

monitored airframe. The measures of performance include mitigation of mission aborts, time

spent repairing components, and time spent awaiting replacement component arrival. Through

this comparison it is possible to determine which components to enter into the program based on

the greatest reduction of mission aborts and possible gain in mission performance and

operational readiness. This can be a useful tool for AMCOM to use in future decision making.

C. LEGACY AND CONDITION-BASED MAINTENANCE PLUS REGIMES

A Legacy unit that conducts maintenance using the conventional maintenance regime is

currently in place at all Army aviation units. A CBM+ unit conducts the Legacy maintenance

regime but also has the benefit of CBM+ sensors installed on specified components. Both

regimes employ intensive scheduled maintenance and reactive unscheduled maintenance. The

use of CBM+ monitoring promises to reduce numerous time-intensive scheduled maintenance

actions, reduce the unexpected nature of unscheduled maintenance, and increase operational

readiness. (Department of the Army, 2004) An example of this is Air Worthiness Release

(AWR) dated 16 June 2005, which deleted mandatory inspection requirements for six different

CBM+ monitored components on AH-64 Apache and UH-60 Blackhawk helicopters. This

AWR saved Maintenance Man Hours (MMH) per inspection, downtime per aircraft, and Time

Between Overhaul (TBO) for components. This AWR is the first of many of its kind that will

transition Army Aviation from the present rigid, time-intensive, and reactive Legacy

maintenance regime to a prediction-based CBM+ maintenance regime.
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D. METHODOLOGY

This thesis is divided into six chapters and follows this structure. Chapter One,

"Introduction", describes the background, objectives, and methodology of this work. Chapter

Two, "Aircraft System Structure and Data", discusses in detail the aircraft components that are

currently monitored by Condition-Based Maintenance Plus and the available data describing

their performance, failure, and repair. This chapter describes the maintenance procedures used

by Army aviation units and the repair times associated with these actions. Chapter Three,

"Stochastic Models for Comparing Legacy Maintenance and Condition-Based Maintenance

Plus", details the model structures, and gives example cases of the stochastic model that is used

in this thesis. Chapter Four, "Legacy Maintenance and Condition-Based Maintenance Plus

Simulation", describes the architecture, characteristics, assumptions, and results of the simulation

used in this thesis. Chapter Five, "Data Analysis", presents the results of the analysis of the

simulation output as different components are monitored and compares average operational

readiness and repair times. Finally, Chapter Six, "Conclusions and Recommendations",

summarizes the findings of this thesis and possible uses for this thesis in future decision making.
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II. AIRCRAFT SYSTEM STRUCTURE AND DATA

A. GENERAL DESCRIPTION OF AIRCRAFT TYPES AND COMPONENTS

This chapter will discuss in detail the aircraft components that are currently in the

Condition-Based Maintenance Plus program or are under consideration for inclusion. Any

available data describing their performance, failure, and repair are listed. Furthermore, this

chapter describes the maintenance procedures used by Army aviation units and the costs

associated with these actions; all CBM+ sensors currently use vibratory information to monitor

these components. The three different types of aircraft presently monitored by CBM+ are the

AH-64 Apache, UH-60 Blackhawk, and the CH-47 Chinook.

1. AH-64 Apache Helicopter Information

The AH-64 Apache helicopter is a twin-engine, tandem-seat, aerial weapons platform.

(TM 1-1520-251-10, 2002) Its primary mission is to provide attack and reconnaissance

capabilities in support of the ground tactical plan. There are currently thirteen components of

eight different types monitored by CBM+ on the AH-64. A listing of AH-64 Apache CBM+

components is listed in Table 1.

Table 1. AH-64 Apache CBM+ Component Listing

,AH-64 COMIPONENT PART
NSN' FEDLOG NOMIENCLATURE

NOMIENCLATURE NUM.\BER

APU Clutch 3010-01-515-8483 3617950-1 CLUTCH ASSEMBLY,FRICTION

Engine Assembly, 701C 2840-01-284-4011 6071T24G01 ENGINE,AIRCRAFT,TURBO-SHAFT

Utility Hydraulic Pump 4320-01-158-0893 7-311810022-3 PUMP,AXIAL PISTONS

Forward Hanger Bearing 3130-01-333-8491 7-311350008-5 BEARING UNIT,BALL

Aft Hanger Bearing 3130-01-333-8490 7-211350007-5 BEARING UNIT,BALL

MR Pitch Housing 1615-01-235-5845 7-311411215-13 HOUSINGASSEMBLY

MR Upper Mast Bearing 3110-01-215-4794 7-311411202-5 BEARINGROLLER,TAPERED

MR Lo
3110-01-179-7335 7-114110011 BEARINGROLLER,TAPERED

wer Mast Bearing

Depicted below in Figure 1 is the location of these components on the AH-64 Apache

extracted from Figure 2-2 of TM 1-1520-251-10. The number in parenthesis indicates the total

number of that type of component on the aircraft.
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Figure 1. Location of AH-64 Apache CBM+ Components
Main Rotor Pitc:h Hou.ing (4) Hydraulic Pump (2)

Main Rotor Upper Mast Bearing1) Engine Assy7 71D

Main Rotor Lower Mast Bearing (1)

h4
FwdAft HanHler Bearinq (1)

2. UH-60 Blackhawk Helicopter Information

The UH-60 Blackhawk helicopter is a twin-turbine engine, single-rotor, semimonocoque

fuselage helicopter. Its primary mission is the tactical transport of troops, supplies and

equipment. Its secondary missions include training, mobilization, development of new and

improved concepts, and support of disaster relief. (TM 1-1520-237-10, 2003) There are

currently nineteen components of eight different types monitored by CBM+ on the UH-60. A

listing of UH-60 Blackhawk CBM+ components is listed in Table 2.

Table 2. UH-60 Blackhawk CBM+ Component Listing

[UH-611 COMPONENT
NSN PART NUMNBER FEDLOG NOM\ENCL.ATURE

NOMNENC(LATLURE
Oil Cooler Fan Bearing 3110-01-329-8573 1 IOKSZZ-401 BEARING,BALL,ANNULAR

Main Rotor Blade 1615-01-106-1903 70150-09100-043 BLADE,MAIN ROTOR

Pump Module Assembly 4320-01-207-7228 70652-02300-050 MODULE ASSY,PUMP

Damper Assembly 1615-01-285-3024 70106-08100-046 DAMPENER,FLUTTER

Engine Assembly, 701 C 2840-01-284-4011 6071T24G0I ENGINE,AIRCRAFT,TURBO-SHAFT

Engine Output Drive Shaft 2835-01-123-7648 70361-08004-043 DRIVE SHAFT ASSEMBLYROTARY WING

Intermediate Gear Box 1615-01-074-5152 70357-06300-042 GEAR BOX ASSEMBLY
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Depicted below in Figure 2 is the location of these components on the UH-60 extracted

from Figure 2-2 of TM 1-1520-237-10. The number in parenthesis indicates the total number of

that type of component on the aircraft.

Figure 2. Location of UH-60 Blackhawk CBM+ Components

O il Cooler Fan Bearirg (4)
Pump rdue Omr bmbI 4

3. CH-47 Chinook Helicopter Information

The CH-47 Chinook is a twin-turbine engine, tandem-rotor helicopter. Its primary

mission is the transportation of cargo, troops, and weapons during day, night, visual, and

instrument conditions. (TM 1-1520-240-10, 2003). There are currently sixteen different

components of four different types on the CH-47 monitored by CBM+. A listing of CH-47

Chinook CBM+ components is listed in Table 3.

Table 3. CH-47 Chinook CBM+ Component Listing

CR-47 C'OMNPONEN\T
N'S N PART NUMBER FEDLOG N'OMENC(L.ATRE

N;OMEN\CLATURE

Hinge Pin Assembly 5315-01-295-7008 114R2197-7 PIN,HOLLOW

Tie Bar Assembly 1615-00-740-6480 114R2155-1 TIE BAR ASSEMBLY,LAMINATED

Engine, Gas Turbine 2840-01-458-5361 2-001-020-39 ENGINE,AIRCRAFT,TURBO-SHAFT

3110-00-141-3750 114RS308-1
Fwd/Aft Swashplate Bearings SWASHPLATE BEARING

3110-01-356-0489 1 14RS308-2
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Depicted below in Figure 3 is the location of these components on the CH-47 extracted

from Figure 2-1-1 of TM 1-1520-224-10. The number in parenthesis indicates the total number

of that type of component on the aircraft.

Figure 3. Location of CH-47 Chinook CBM+ Components

Ti Barin Assmbl (6
I H ing e Pin A ss em bly (6) -....................................................

B. SPECIFIC DESCRIPTION OF COMPONENT CHARACTERISTICS

Brief descriptions of the components of interest on the AH-64 Apache referenced from

TM 1-1520-251-10 are:

1. Auxiliary Power Unit Clutch is a subcomponent of the Auxiliary Power Unit (APU)

which provides both hydraulic pressure, pressurized air, and electrical power for the operation of

systems onboard the AH-64 whether the engines are operating or not. The APU is required to

start the main engines unless the AH-64 is assisted with an Auxiliary Ground Power Unit

(AGPU).

2. 701C Engine Assemblies are the main engines for the AH-64. The engines are front

drive turbo shaft engines of modular construction. One horizontally mounted engine is housed

on either side of the AH-64 aft of the main transmission above the wing.

3. Utility Hydraulic Pump is a subcomponent of the utility hydraulic system that

provides hydraulic power to the flight controls, weapon drives, ammunition systems, and
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emergency hydraulic systems. This pump is mounted on the accessory drive case of the main

transmission (right side).

4. Forward Hanger Bearing is a component of the tail rotor drive system. A

hanger bearing supports the two longest shafts of three shafts that lead from the transmission to

the intermediate gear box. There is a fourth shaft that leads from the intermediate gear box to the

tail rotor. The forward hanger bearing is located on the end of the second shaft.

5. Aft Hanger Bearing serves the same purpose as the Forward Hanger Bearing; it is

located on the end of the third shaft.

6. Main Rotor Pitch Housing is a subcomponent of the rotor head. The pitch housing

permits blade pitch changes in response to flight control movements transmitted through the

swashplate.

7. Main Rotor Upper Mast Bearing is a subcomponent of the AH-64 mast collocated

with the rotor head.

8. Main Rotor Lower Mast Bearing is similar to the upper bearing but located lower.

Brief descriptions of the components of interest on the UH-60 Blackhawk referenced

from TM 1-1520-237-10 are:

1. Oil Cooler Fan Bearing is a subcomponent of the tail rotor drive section. The oil

cooler cools oil from the engine before it returns it to the oil tank. Shafts from the main

transmission connect the oil cooler and also transmit torque to the tail rotor. There are four

points were viscous damped bearings are mounted on adjustable plates which support these

shafts that lead to the tail rotor.

2. Main Rotor Blades are a subsystem of the main rotor system. A rotor blade has a

titanium-spar and is attached to spindles which are retained by elastomeric bearings contained in

one-piece titanium hub. The elastomeric bearing permits the blade to flap, lead, and lag.

3. Pump Module Assembly is a component that provides hydraulic pressure to the

Blackhawk's hydraulic system. The hydraulic pump module assemblies are a combination of a

hydraulic pump and a hydraulic fluid reservoir.
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4. Damper Assembly is located between the main rotor blade and the main rotor head.

Main rotor dampers are installed between each of the main rotor spindles modules and the hub to

restrain leading and lagging motions of the main rotor blades during rotation and to absorb rotor

head loads when starting the aircraft. Each damper has a small hydraulic fluid reservoir.

5. 701C Engine Assemblies are the main engines for the U}H-60. The engines are front

drive turbo shaft engines of modular construction. One horizontally mounted engine is housed

on either side of the UH-60. These are the same engines that are mounted on the AH-64 Apache.

6. Engine Output Drive Shaft is a subcomponent of the ULH-60 power train system. It

transfers torque generated by the engine to the main transmission.

7. Intermediate Gear Box is a subcomponent of the UH-60 power train system. It is

mounted at the base of the tail pylon. It transmits torque and reduces shaft speed from the main

module gear box to the tail rotor gear box.

Brief descriptions of the components of interest on the CH-47 Chinook referenced from

TM 1-1520-224-10 are:

1. Hinge Pin Assembly is a component of the rotor system. The rotor head consists of a

hub connected to three pitch-varying shafts by three horizontal hinge pins. These pins permit

blade flapping. Stops on the top and bottom of the hub limit the blade flapping motion.

2. Tie Bar Assembly is located close to the hinge pin assembly. It connects the pitch-

varying shafts to the pitch-varying housings on the rotor heads.

3. Engines on the CH-47 are housed in separate nacelles mounted externally on each side

of the aft pylon.

4. Forward/Aft Swashplate Bearings rotate and transfer blade pitch changes by the three

pitch-varying links to the pitch-varying housing on each rotor blade.

C. MAINTENANCE REGIMES OF COMPONENTS

Army Aviation maintenance regimes are composed of both periodic and on condition

maintenance tasks. Prescribed maintenance tasks can be subdivided into five major areas:

(AMCOM Proof of Principle, 2005)
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1. PM: Maintenance or inspections performed in accordance with normal Preventive

Maintenance Checks and Services.

2. On Condition: Maintenance or inspections occurring after the aircraft encounters a

specific event or flight in certain environmental conditions.

3. -18: Maintenance or inspections prescribed in maintenance manuals and tracked on the

-18 forms kept in the aircraft log book.

4. ASAM: Maintenance or inspections listed in a specific Aviation Safety Action

Message.

5. AWR: Maintenance or inspections listed in a specific Air Worthiness Release.

These maintenance tasks are outlined by several different maintenance manuals, log book

forms, and messages/releases specific for each airframe type. A component may be inspected as

often as every day or at intervals of several hundred hours. Each inspection interval is a unique

inspection in the sense that some of the more common inspections are a visual exterior check of

a component whereas the more infrequent inspections require removal of the component from

the airframe, disassembling it, and conducting a much more thorough inspection. Each

inspection has a specific number of maintenance-man hours (MMH) required in order to

complete the maintenance task.

Listed below in Tables 4 and 5 are the most time consuming and thorough inspections for

each component listed above for the AH-64 Apache and UH-60 Blackhawk. In cases where

there are two different interval inspections with the same MMH and clock time requirements the

more frequent inspection of the two is listed:
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Table 4. AH-64 Apache Maintenance Regime

AH-04 Component ispectimn Interval Reference Ma.it Type MMIH

APU Clutch 250 Flight Hours TB 1-1520-238-20-139 -18 34.4*

Eng Assy, 701C 500 Flight Hours TM 1-1520-238-PM PM 20.5*

Utility Hydraulic Pump 250 Flight Hours TB 1-1520-238-20-139 -18 1.1

Forward Hanger Bearing 500 Flight Hours TM 1-1520-238-PM PM 4.4*

Aft Hanger Bearing 500 Flight Hours TM 1-1520-238-PM PM 4.4*

Main Rotor Pitch Housing 125 Flight Hours TM 1-1520-238-23 -18 0.5*

Main Rotor Upper Mast Bearing 500 Flight Hours TM 1-1520-238-PM PM 20.4*

Main Rotor Lower Mast Bearing 500 Flight Hours TM 1-1520-238-PM PM 20.4*

If no Maintenance Allocation Chart (MAC) data was available or seemed suspect a review of the appropriate

techniques were conducted and a time was allocated by AMCOM Subject Matter Experts

Table 5. UH-60 Blackhawk Maintenance Regime

L'11-60 Coimponent In1spectiou Referenice Maint Ty pe M H

Oil Cooler Fan Bearing 700 Flight Hours TM 1-1520-237-PMI PM 11.3*

Main Rotor Blade 700 Flight Hours TM 1-1520-237-PMI PM 17.2

Pump Module Assembly 700 Flight Hours TM 1-1520-237-PMI PM 0.03

Damper Assembly 700 Flight Hours TM 1-1520-237-PMI PM 2.5*

Engine Assembly, 701C 700 Flight Hours TM 1-1520-237-PMI PM 12.4*

Engine Output Drive Shaft 700 Flight Hours TM 1-1520-237-PMI PM 4.9*

Intermediate Gear Box 120 Flight Hours TM 1-1520-237-23 -18 2.0*

*If no Maintenance Allocation Chart (MAC) data was available or seemed suspect a review of the appropriate techniques

were conducted and a time was allocated by AMCOM Subject Matter Experts

A CH-47 Chinook Maintenance Regime is not listed since a Proof of Principle brief was

not conducted on the CH-47 Chinook CBM+ program due to the progression of the CH-47

CBM+ program. Proofs of Principle briefs are the source of maintenance regime information for

both the AH-64 Apache and UH-60 Blackhawk. (Brown, 2005)

D. FAILURE/AGE REPLACEMENT CHARACTERISTICS OF COMPONENTS

The Aviation and Missile Research, Development, and Engineering Center (AMRDEC)

provided data sets for component failure times. The failure times are the occurrences of serious

diagnostic symptoms requiring maintenance actions. The data sets are displayed in Microsoft
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Excel format and each data set consists of twenty-one columns. The twenty-two columns are

listed below.

1. WUC: Work Unit Code

2. PN: Part Number of component

3. SN: Serial Number of component

4. EISN: End Item Serial Number (aircraft tail number)

5. MODEL: The model of aircraft

6. DATE: Date the action was performed

7. REPNUM: Repair Number-The number of times the part was removed for a causable

removal.

8. CEN: Censored-If 1 then installed and still flying, else 0 and component removed

9. LIFE: If CEN=0, the time on the component since new or last causable removal. If

CEN= 1, the current time on the component.

10. TSN: Time Since New

11. TSO: Time Since Overhaul

12. NOVH: Number of Overhauls

13. FTYPE: Type of failure

14. FCODE: Failure Code 001 to 999, the reason the part was removed

15. FAILURE: Narrative for the FCODE

16. FAMILY: The fail code grouped into failure family types.

17. PREVFC: Failure Code on the previous removal

18. REPUIC: UIC that repaired the item last or original manufacture if REPNUM= 1.

19. REPAIR: Location name of the UIC that repaired the item last.

20. UIC: Unit Identification Code of removing unit

21. LOC: Location of the UIC
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22. SNPREFX: Serial Number substring as a prefix to perform comparison analysis

In addition to this data, each airframe type has a Technical Manual which states a

component's Time Between Overhaul (TBO) and/or component retirement time. These manuals

allow the determination of a component's age replacement time if one exists. Listed below in

Table 6 are the CBM+ component's estimated mean time between failure (MTBF) and Age

Replacement times. The Age Replacement times are derived from the applicable airframes'

Technical Manual. The MTBFs listed below are obtained from AMCOM's Proof of Principle

briefs prepared in July 2005. (Brown, 2005) The MTBF estimates take into account that some of

the data are censored. When both TBO and component retirement times are given by the

applicable reference the more restrictive of the two numbers is listed.

Table 6. CBM+ Component MTBF and Age Replacement

AH-64 Component MITBF Age Replacemnift
APU Clutch 900 Flight Hours On Condition of Failure

Engine Assembly, 701C 1,304 Flight Hours 5,000 Flight Hours**

Utility Hydraulic Pump 464 Flight Hours On Condition of Failure

Forward Hanger Bearing 834 Flight Hours 2,500 Flight Hours

Aft Hanger Bearing 537 Flight Hours 2,500 Flight Hours

Main Rotor Pitch Housing 257 Flight Hours 5,300 Flight Hours

Main Rotor Upper Mast Bearing 1,250 Flight Hours 1,750 Flight Hours

Main Rotor Lower Mast Bearing 1,250 Flight Hours 9,400 Flight Hours

U-H-611 Conipouent MJTBF A-ge Replaceentci
Oil Cooler Fan Bearing 14,425 Flight Hours 700/2,100 Flight Hours*

Main Rotor Blade 1,594 Flight Hours 9,600 Flight Hours

Pump Module Assembly 5,969 Flight Hours On Condition of Failure

Damper Assembly 6,629 Flight Hours On Condition of Failure

Engine Assembly, 701C 1,342 Flight Hours 5,000 Flight Hours**

Engine Output Drive Shaft 2,581 Flight Hours On Condition of Failure

Intermediate Gear Box 6,624 Flight Hours On Condition of Failure

CH-47 Component MITBF Age Replacemnift
Hinge Pin Assembly 3,393 Flight Hours 1,200 Flight Hours

Tie Bar Assembly 2,925 Flight Hours 4,800 Flight Hours

Engine 602 Flight Hours 2,400 Flight Hours

Forward/Aft Swashplate Bearings 991/867 Flight Hours 1,200 Flight Hours
*700 flight hours when installed at Station 410.5; all others 2,100 flight hours
**701C Engine Assembly has several components changed at various intervals. 5,000

Flight Hours is the most common age replacement time of the most critical components.
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E. COSTS ASSOCIATED WITH COMPONENTS

Listed below are each component's cost and an estimate of its shipping cost. It is

assumed that the components can be divided into three different weight classifications. A

component weight is considered to be either light, medium, or heavy. In addition, the

component's shipment is either urgent or not urgent. Table 7 displays the approximate costs of

shipping components of different weights 2000 miles under urgent and not urgent requirements.

These shipping costs, while approximate, are realistic. Although the model and simulation do

not include costs for component shipping this must occur in both the Legacy and CBM+ Process;

it is important to state these values in recognition that this exists in both processes.

Table 7. CBM+ Component and Shipping Costs

FEDLOG Un1itWiIt Lrcf hj~~w Nl-1-ci
AH-64 Co[mpoen 0tt S...S Weighit Weght.Urgent Si i Nan-urgent

Price Classificatiorn Cost Shippingj Cost

APU Clutch S-27,774.00 Unavailable Medium S 1,000 S500
Engine Assembly, 701C S720,974.00 Unavailable Heavy S3,000 S 1,500

Utility Hydraulic Pump S9,437.00 Unavailable Medium S 1,000 S500
Forward Hanger Bearing S6,94 1.00 400 Light S200 S50

Aft Hanger Bearing S5,673.00 216 Light S200 S50
Main Rotor Pitch Housing S6,846.00 894 Medium S 1,000 S500

Main Rotor Upper Mast Bearing S7,295.00 275 Light S200 S50
Main Rotor Lower Mast Bearing S5,126.84 40 Light S200 S50

FEDLOG Uniit Weight U~rgent Shippingw Nan-11-urget
UH-0 ompnetPrMicWegh Classificatiorn Cost Shipping Cost

Oil Cooler Fan Bearing S290.71 8 Light S200 S50

Main Rotor Blade S 130,420.00 6500 Medium S 1,000 S500
Pump Module Assembly S16,771.00 560 Medium S 1,000 S500

Damper Assembly S9,770.00 500 Light S200 S50
Engine Assembly, 701C S720,974.00 Unavailable Heavy S3,000 S 1,500

Engine Output Drive Shaft S4,8 12.00 Unavailable Medium S 1,000 S500
Intermediate Gear Box S20,694.00 800 Medium S 1,000 S500

FEDLOG Un1it Weighlt U~rgent Shipping- Nani-urgenlt

CR4 CmpoenPriceWegh Classificatiorn Cost Shipping Cost

Hinge Pin Assembly S5,520.00 330 Light S200 S50
Tie Bar Assembly SII,822.00 120 Light S200 S50

Engine S916,406.00 11,650 Heavy S3,000 SI,500
Forward/Aft Swashplate Bearings Unavailable Unavailable Light S200 S50
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III. STOCHASTIC MODELS FOR COMPARING LEGACY

MAINTENANCE AND CONDITION-BASED MAINTENANCE PLUS

A. IMPORTANT FACTORS FOR CBM+ CANDIDACY

In determining a whether or not to introduce a component into the CBM+ program a

number of factors should be considered:

1. How often does the component fail during active flight hours?

It is preferable to introduce a component that fails often versus components that rarely

fail.

2. What are the consequences of a component failing?

It is preferable to introduce a component that possesses severe consequences for failure

versus a component that is inconsequential in its failure.

3. What is the difficulty level of the inspection that would be alleviated by CBM+?

If an inspection is extremely difficult and resource intensive to perform it would be

preferable to have this inspection replaced by CBM+ versus an inspection that is simple and easy

to perform.

4. Is a CBM+ sensor feasible for a component?

If measurements cannot be taken to assess the degradation of the component before it

fails then that component would not be a good CBM+ candidate. Furthermore, the time from

occurrence of measurable evidence of impending failure until failure should be long enough to

detect the impending failure and take maintenance action.

5. What is the reliability of the CBM+ sensor, the difficulty of inspecting the CBM+

sensor, and the effect of the CBM+ sensor on performance of the component being monitored?

Is there even a CBM+ sensor currently developed for a component? What is the cost of the

sensor?

By focusing on the CBM+ sensor it can be determined whether or not the sensor

itself may sometimes miss impending failures, give false positives, require intensive

maintenance, or impede standard operations. Maintainers are often wary of adding a new system
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designed to help them conduct maintenance operations for fear of there now being one more

system to maintain.

Stochastic models can be created to assist in identifying information needed to determine

characteristics of components that make the component a good candidate for monitoring by

CBM+. Such stochastic models compare a single component's performance and associated costs

in both the CBM+ and Legacy processes. The models can vary in detail and complexity;

transparency and simplicity are desirable.

B. MODEL OVERVIEW

In choosing a model to represent the operating environment of CBM+ it is convenient to

let every aircraft component being considered for CBM+ begin in good operating condition.

Over time the component's condition/state degrades and eventually the component fails. We

consider a component that allows predictive measurements to be made of its condition (failure

propensity); these are diagnostic symptoms (DS). If a DS can be recognized by maintenance

personnel then this information is a useful indication that the component is beginning to fail. A

DS can be detected by a CBM+ sensor or noticed by a maintainer during the conduct of

scheduled maintenance, or by the operator.

If conditions for a near-term future failure exist it is essential to recognize the

impending failure in order to lessen such a failure's effect. CBM+ sensors recognize impending

failure of components by monitoring the component's performance. Specifically the UH-60

IMD-HUMS system notes condition indicators (CIs) based on vibratory analysis of items such as

bearings, shafts, and gears. These CIs are rolled up into health indicators (HIs) which are

numbers from 0 to 1 displaying the perceived health of that component. (Wright, 2005) This

system of CIs and HIs is used to determine the occurrence of DSs. Under the Legacy

maintenance system when maintenance personnel conduct a scheduled inspection of an aircraft

they are looking for chips, cracks, dents, nicks, wears, incorrect lubrication levels, incorrect

pressure outputs (pneumatic and fluids), and other potential faults. These physical inspections

determine the occurrence of DSs. A DS may or may not be noticed during the downtime

immediately following the mission during which it was generated. All DSs are discovered during

inspections during downtimes. (Gaver and Jacobs, 2006)
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The following are the components which form a general framework for a Non-

Homogeneous Poisson Process (NHPP) model for the occurrence of DSs for both the CBM+

process and the Legacy process:

N(t): number of transitions of components from good condition to poor condition

during the time interval (0,t], (number of occurrences of DSs during (0,t]); each transition

corresponds to the occurrence of one DS. In many cases the times between failures of repairable

components may tend to decrease as the components age. Thus {N(t);t I_ O} is assumed to be a

nonhomogeneous Poisson process with

A(1): mean value function of {N(t);t>0}; that is E[N(t)] = A(t).

A(/): intensity function of {N(t);t>0}; that is A (t) dAt)

m: constant mission length

C. A NON-HOOMOGENEOUS POISSON PROCESS (NHPP) MODEL

Renewal processes are often used to model times between failures for a system. For a

renewal process to apply, the times between successive failures should be independent and

identically distributed with an arbitrary distribution. (Ross, 2003) In order to either accept or

refute the assumption that the times between failures are independent and identically distributed

failure data must be analyzed. The data set that was selected for evaluation is the set of AH-

64/UH-60 701C Engine lifetime data. The lifetimes are the times between occurrences of

serious diagnostic symptoms requiring maintenance action. The reason for the selection of this

data set is that each engine may have several failure times recorded. The data set contains both

censored and uncensored lifetime data. Multiple lifetimes for an engine are indicated by the

same engine serial number (SN) being listed with consecutive lifetimes (REP NUM). This gives

the opportunity to assess whether or not the successive times between failures for an engine can

be approximately represented as independent and identically distributed. If there is evidence that

the successive lifetimes are not independent and identically distributed, then a renewal process

model for the times between failures is not appropriate.
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Analysis of the engine data suggests that the times between failures are not identically

distributed. Therefore a Non-Homogeneous Poisson Process (NHPP) model for the failure times

is considered. Although the term "failure" is used, these events are actually occurrences of

serious diagnostic symptoms that require maintenance action.

The AH-64/UH-60 701C Engine data provided by AMRDEC consists of 3,385 entries in

the format outlined in Chapter Two. From this group of 3,385 entries there were 2,045 entries

that were first lifetimes, 913 entries that were second lifetimes, 480 that were third lifetimes, and

397 that were fourth lifetimes. These data are not complete with regards to all lifetimes being

annotated for all serial numbers. There are missing lifetime data which are not due to censoring.

However, some of these missing lifetimes can be inferred from other recorded data. For

example, suppose the first lifetime is missing but the second lifetime is recorded along with the

time since the engine was new at the time of the second failure. In this case the first lifetime can

be inferred by subtracting the second lifetime from the time since new. The engine data

considered appear in Appendix A. The engines considered have at least 3 failure times recorded.

The columns named WUC, PN, TSO, NOVH, REPUIC, REPAIR, UIC, LOC, and SN_PREFX

have been omitted from the original data set since these factors are not relevant in this analysis,

and to make the data set more compact. None of the engines displayed TSO (Time Since

Overhaul) and NOVH (Number of Overhauls); therefore these columns are omitted.

In Figure 4 the mean times between failures for the first, second, third and fourth failures with

95% confidence intervals are displayed; censored lifetimes are not included. This figure

suggests that the successive lifetimes of an engine are not identically distributed; the time until

first failure tends to be much larger than the subsequent times between failures.

Figure 4. Mean Failure Times for Engines by Consecutive Lifetimes

Mean Failure Times for Engines by Consecutive
Lifetimes

Fifth Lifetime

Fourth Lifetime
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An estimate of the intensity function of a NHPP is obtained by using disjoint time

intervals of length 500 hours from 0 to 3,000 hours. Let N. (t) be the number of failures for

engineJ during the time interval (0,t].

I I if the last observation for engine j (censored or not)is greater than x
j (X) 00 { otherwise

The intensity function in the age interval [x, x+500] where x e (0, 500, 1,000, 1,500, etc.) is

estimated as

Z[Nj (500+x)-Nj(x)]

(Jacobs, 2006)

500ZIj (x)

A display of the resulting estimated intensity function is in Appendix B. The log of the

estimated intensity function versus log t is also displayed. This latter display suggests that an

NHPP with power-law mean value function A(t) = yt' tends to summarize the data well. The

parameters of a NHPP with power-law mean value function of the form AQ(t) y=t are

estimated from the engine data using maximum likelihood. The estimates and standard errors

are listed in Figure 5. The standard errors are obtained using Fisher information. (Bickel and

Doksum, 1977)

Figure 5. NHPP Parameter Estimates
NHPP Parameter Estimates

Estimate of y 5.4x10-6  Estimate of (5 1.71
Standard Error 6.3x10-7  Standard Error 0.015
Estimate ± 2 s.e. (4.2x10-6,6.7x10-6) Estimate ± 2 s.e. (1.68,1.74)

The estimate of 3 is statistically significantly greater than 1, suggesting that failures are more

frequent for older engines. The older an engine, the more likely various subcomponents are to

fail.

D. MODEL STRUCTURE

The power law NHPP model with the estimated parameters is used in a model to assist in

the selection of components for inclusion in the CBM+ process. The model represents the arrival

of DSs during each mission, the number of downtimes elapsed until the DSs are discovered, the
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repair times associated with the discovery of the DSs, and the chance a component failure will

cause a mission abort. This analytical model is taken directly from Gaver and Jacobs (2006).

Let N(t)be the number of transitions of components from good condition to poor

condition (occurrence of diagnostic symptoms (DS)) during the operational time interval (0,t].

{N(t);t/ _ } is a nonhomogeneous Poisson process with mean value function A(/)= E[N(t)]

and intensity function 1 = dt . The DSs may not be discovered immediately. The DSs are

discovered during inspection during downtimes. Each mission is of length m. Let

Ni= N(mi)-N(m(i-1)) be the number of DSs to occur during the ith mission. Ni has a

Poisson distribution with mean Ai= A (mi) - A (m (i-1)). For example if the length of the

mission is 4 hours long (m=4) andA(t)=>vy, then Aj= y(4i)fv-y(4(i-1))". The

computations used to derive the estimates of y and 6 are listed in Appendix C. These estimated

values are used throughout the thesis.

Let pj be the conditional probability a DS is discovered during the /th downtime after the

mission within which it first appears, given it has not been discovered before and the DS has not

caused a mission abort; the downtime immediately after the mission the DS appears in is labeled

downtime 1. In general, p, < t P2 < .... Assume that whether or not a DS is discovered during a

downtime is independent from downtime to downtime and from DS to DS. Suppose also that if a

DS is generated during a mission it can critically activate during that mission, causing the

mission to fail. This is known as a mission abort. Further, let aj denote the conditional

probability that the DS critically activates during the /th mission after its generation, given it has

not been discovered and rectified in advance; a, is the probability of critical activation during

the mission of its genesis. Let Di,i+j be the number of DSs that occurred during mission i that

are discovered during the jth downtime after mission i before a critical activation; it has a

Poisson distribution with mean Ai ; that is, D hasha Poisson

distribution with mean Ai (I - al) Pl; Di'i+1 has a Poisson distribution with mean
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Ai(1-a 1 )(1-Pl)(1-a 2 )P2, etc. Further, these random variables are currently assumed

independent. It is of course possible that critical activation occurs before the DS is discovered

and the fault removed. Let Di denote the number of DSs that are generated during the ith

mission that give rise to a critical activation (mission abort) before discovery j missions after

they are generated. Clearly Oi*i is Poisson with mean Aial, D/i +1 is Poisson with mean

Ai (1- a1 )(1- Pi) a2 ; etc. (Gaver and Jacobs, 2006)

Assume that DSs that cause mission abort are discovered in the downtime following the

aborted mission. The number of DSs discovered during the ith downtime,

hi + DjDj+(ij) +, has a Poisson distribution with mean
j=l

i I(i-)(1
E [hi I ajfj (I- k(1 a-/)j 11- (1- ai+l-j) (1- Pi+l-j)

j=l =

where an empty product is interpreted as equal to 1. (Gaver and Jacobs, 2006)

The expected number of missions that are not aborted during the first t scheduled

missions can be calculated as follows. Let S(t) be the number of DSs that can cause mission

abort during mission / ; there is at most one mission abort per mission. Let s(n) be the

probability a DS causes a mission abortion during the nth mission after it is generated. Assume

pi - p and ai - (a for all i.

s (n ) = ( 1 a ) ( 1 -p )] n•- l 11

i=l

Var[S(t)] ZA isQt-(i-1))
i=1
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S(t) has a Poisson distribution. The probability mission / is aborted is

P {S (t) > O} 1- exp {-E [S (t)]}. Let A (t) be the number of missions that have been aborted

during the first t missions. A mission is aborted if at least one DS causes a mission abort.

E [A(/)] Z[1- exp{ý-E[S (i)] (2)
i=1

t

VAR [A [I) - exp {-E [S (i)]}] exp {-E [S (i)]}
i=1

In the general case

t-1S() fj [(I [(- j) (1- Pi)]at (3)
i=1

where an empty product is set equal to 1. (Gaver and Jacobs, 2006)
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IV. LEGACY MAINTENANCE AND CONDITION-BASED

MAINTENANCE PLUS SIMULATION

A. SIMULATION ARCHITECTURE AND CHARACTERISTICS

This simulation is based on the nonhomogeneous Poisson process model as described in

Chapter III. The Visual Basic for Applications (VBA) coding used as a macro within Microsoft

Excel 2003 is listed in Appendix D. The Excel workbook consists of four worksheets named

"RVs", "Legacy Process", "CBM+ Process", and "Data".

The purpose of "RVs" worksheet is to receive all variable inputs. The variable inputs for

this simulation are:

1. # Replications: This number sets the number of iterations for the simulation to

perform.

2. PL(h): The probability that the Legacy Process will recognize a DS during a downtime

that includes an inspection lasting h hours.

3. Pc: The probability that the CBM+ Process will recognize a DS during a downtime.
1

The number of downtimes until a DS is discovered has a geometric distribution with mean

For each DS an independent Pc is drawn from a Beta distribution with mean 0.99 and variance

.00037711. The randomization of Pc is determined by a Beta distribution and both aB and /3 B

parameters are entered on the worksheet. Initially the Beta distribution is generated using aB=2 5

and ,B=. 2 5 . The equation for the probability density function of the beta distribution is:

/(x; aB ,B) 1 x a'(1-x)I6B' for 0• x •1 and 0 otherwise
B(aB I 18B)

where B is the normalizing constant.

4. R0: The initial repair time incurred upon a DS discovery.

5. RI: The subsequent repair time incurred if DS not discovered after first mission.

6. A0 : The initial repair time incurred upon a mission abort.
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7. A1 : The subsequent repair time incurred if mission abort causing DS is not discovered

after first mission.

8. MA: For each DS an independent time until the DS results in a mission abort is drawn

from a Weibull distribution with shape parameter 1.5 and mean 10. The values of both Weibull

parameters awv and ,iw parameters are entered on the worksheet. Initially the Weibull distribution

is generated using aw=1.5 and fiw=l 1.08. The equation for the probability density function of the

Weibull distribution is:

(c•.)( x)(•, )p,
x ) X for x Ž> 0 and 0 otherwise

9. POH: This is the probability that the required replacement component is on hand when

a DS is discovered or causes mission abort. For each discovered DS, or a DS that causes a

mission abort, an independent Bernoulli random number is generated to determine if the

replacement component is immediately available or must be ordered from a depot.

10. TOH: If a replacement component is ordered, a time TOH until the replacement

component arrives is generated; the time has an exponential distribution.

11. ki: The expected number of DSs to occur during mission i having length 4 hours;

A, = y[(4i)" - (4(i - 1)")] ; the values of gamma and delta are the maximum likelihood estimates

obtained from analysis of the engine data.

The "RVs" worksheet generates the number of DSs to occur during each mission; the

number of DSs that occur during the ith mission is generated using a Poisson distribution where

the mean is determined by the appropriate 2vi . These numbers of DSs are used for both the

"Legacy Process" and the "CBM+ Process". This provides a common arrival process for both

the Legacy and CBM+ processes.

The purpose of the "Legacy Process" and "CBM+ Process" worksheets is to provide the

cell structure and formula to determine the following information for the two different processes:

1. Dij: The number of downtimes to occur until the jth DS generated during the ith

mission is discovered.
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2. MAEj: The number of downtimes to occur until the jth DS generated during the ith

mission results in a mission abort; for each DS the same time until mission abort is used in the

Legacy and CBM+ models.

3. R1j: The total repair time from the jth DS resulting from the ith mission.

4. S1j: The total time awaiting replacement components from the jth DS resulting from the

ith mission; for each DS the time is drawn from an exponential distribution with a common mean

for both the Legacy and CBM+ models.

The purpose of the "Data" worksheet is to display the results of each simulation

replication and then compute the means, standard deviations, and 95% confidence intervals of

the results for the Legacy and CBM+ processes. The results that are tabulated for both processes

are:

1. YDSs<=M: The number of diagnostic symptoms that are detected before the end of

the total number of missions observed (M).

2. YDSs>M: The number of diagnostic symptoms that are detected after the end of the

total number of missions observed (M) but were generated during the M missions.

3. YAborts<=M: The number of mission aborts that occur before the end of the total

number of missions observed (M).

4. YAborts>M: The number of mission aborts that occur after the end of the total

number of missions observed (M) that are due to DSs generated during the M missions.

5. YR<=M: The sum of repair times that occur before the end of the total number of

missions observed (M).

6. YR>M: The sum of repair times that occur after the end of the total number of

missions observed (M) that are due to DS generated during the M missions.

7. YR: The sum of repair times that occur.

8. YS<=M: The sum of time spent awaiting component arrival that occurs before the end

of the total number of missions observed (M).

9. YS>M: The sum of time spent awaiting component arrival that occurs after the end of

the total number of missions observed (M) that are due to DS generated during the M missions.
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10. YS: The sum of time spent awaiting component arrival that occurs.

B. DETERMINATION OF Pc and PL

The number of downtimes until the Legacy or CBM+ process recognizes a DS is a direct

result of a process's probability of successfully at detecting a DS. The conditional probability a

DS is discovered n downtimes after it is generated in the Legacy process, given it has not been

discovered before and has not caused a mission abort, is PL(h) where h is the maintenance man-

hours (MMH) incurred during the downtime; in the CBM+ process the conditional probability a

DS is discovered during a downtime, given it has not been discovered before and has not caused

a mission abort is a constant Pc; that is the number of downtimes until a generated DS is

discovered has a geometric distribution with probability of success Pc. Initially it is assumed

that the CBM+ Process P, has an expected value of 0.99; this may be an optimistic value. The

effect of the variability of the time to discover different DSs is modeled by randomizing Pc using

a Beta distribution. For each generated DS the Pc is independently drawn from a Beta

distribution having mean 0.99. The mean value of 0.99 is based on a telephone conversation

with Mr. Johnny Wright the Deputy Program Manger for B.F. Goodrich Corporation's IMD-

HUMS program on January 27, 2006. (Wright, Personal Communication, 2006) He stated that

the parameters of the CBM+ sensors were set very conservatively in order to capture all changes

in vibratory patterns. Since this is an emerging technology, B.F. Goodrich Corporation wants to

ensure that their sensors do not inadvertently miss any vibratory indications that could be used to

indicate impending component failure. However, the conservative setting may increase the

chance of false alarms. The mean value of Pc will be varied in Chapter 5 in order to explore

sensitivity of the simulation results to its value. Furthermore false positives (false alarms) will

also be introduced into the simulation in order to observe their impact on the CBM+ process.

The Legacy maintenance schedule of the UH-60 Blackhawk 701C Engine

Assembly will be used to describe the specification of the probabilities of the Legacy system

discovering a previously generated DS during the downtime with h MMH, PL(h). Although the

701C Engine Assembly is used by both the AH-64 Apache and the UH-60 Blackhawk the two

airframes have different maintenance schedules. Listed in Table 8 below is the maintenance

schedule for the UH-60 Blackhawk 701 C Engine Assembly maintenance schedule as listed in the

AMCOM Proof of Principle briefing from June of 2005. (Brown, 2005)
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Table 8. UH-60 Blackhawk 701C Engine Assembly Maintenance Regime

1pre-ctiog RT1ere15 e M23a-Ct Type Tak or Paragrapb 0

Pre-Flight TM 1-1520-237-CL PM Not Applicable 0.1

Post-Flight TM 1-1520-237-CL PM Not Applicable

Daily TM 1-1520-237-PMD PM 6.17 0.2

40 Hr Output Shaft Inspection TM 1-1520-237-23 PM ch I sec 7-10.2 0.4

120 Hr DS Inspection TM 1-1520-237-23 -18 ch I sec 7-11.1 3.4

120 Hr Clean Engine Compressor TM 1-2840-248-23 -18 1.158 thru 1.161 1.6

350 Hr TM 1-1520-237-PMI PM 6.37, 6.43 5.9

700 Hr TM 1-1520-237-PMI PM 6.37 - 6.48 12.4

It is evident that the most time intensive inspection occurs every 700 hours and it requires

12.4 maintenance man-hours (MMH). 12.4 MMH is the h,,,,. We assume the probability of

detecting a DS during this inspection is PL(7 00 )= Pc,. We assume that the amount of MMH

expended during an inspection, h, is an indication of the probability of discovering a DS of

PL(h). We model the probability of detecting a DS for the other inspections as follows:

1. Set x'... 1- PL (hnmax) for the known most MMH-intensive inspection;

2. Solve for X = (1 - PL (hmx))

3. The probability of detecting a DS during an inspection lasting h hours is
h

PL (h) = 1 - (1 - IPL (hmax ))h,_ ....

Using this methodology and Table 8 the following values are computed for PL(h) at

differing maintenance inspection intervals.

Table 9. UH-60 Blackhawk 701C Engine Assembly PL
Jiispectionl IntervNal Mahitewmiace Mani-Hours P (h))

Baseline* 0.3 0.11

40 Hour 0.4 0.14

120 Hour 5 0.84

350 Hour 5.9 0.89

700 Hour 12.4 0.99

* Baseline is summed total of Pre/PostFlight and Daily inspection times
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This provides realistic models of varying levels of PL(h) that can be input into the

simulation. The generation of the times until DS discovery for both processes is detailed in

Section D below.

C. ANALYTICAL VERSUS STOCHASTIC RESULTS

Results obtained from the simulation and the analytical formulas are displayed in Table

10. Examination of the results can determine whether or not the simulation model and the

analytical model results are comparable. Since DS arrivals drive all other factors in this

simulation it is important to evaluate the number of DS arrivals during the course of 1,250

missions (5,000 flight hours). The expected number of DSs that are generated during 1250

missions is y15000 11.42 where y 5.4*10 and 3 = 1.71. The simulation model with 1,000

replications results in a mean number of DSs generated equal to 11.34 with a 95% confidence

interval of (11.14, 11.54). Thus the generation of DSs in the analytical model and the simulation

are in good statistical agreement.

Results from a simulation of the number of mission aborts during 500 missions are

displayed in Table 10. Each simulation has 500 replications. The time until a DS is discovered

has a geometric distribution with constant probability of success Pc. The time until a DS causes

a mission abort has a geometric distribution with probability of success PA; the two times are

assumed independent. The mean number of system aborts and the corresponding expected

number of system aborts obtained from the analytical model equations (1) and (2) are displayed.

As expected the analytical results fall within the 95% confidence interval of the simulation

results.

Table 10. Special Case Analytical and Simulation Results

Case Analytical Simulation (95% CI0

Pc=.7, PA=.l 5.99 6.02 (5.87, 6.17)

Pc=.7, PA=. 2  11.44 11.60 (11.40, 11.80)

PL=.3, PA=. 2  19.50 19.77 (19.49, 20.05)

D. RANDOM NUMBER GENERATION USING CRYSTAL BALL

The add-in Crystal Ball version 5.5 is used as the random number generator (RNG) for

this simulation. Crystal Ball version 5.5 is chosen to provide the random numbers for this
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simulation because Microsoft Excel 2003's RNG has been shown to have insufficient period

length and an incorrect implementation of the Wichmann-Hill Algorithm. (McCullough and

Wilson, 2005) Crystal Ball is considered one of the industry's leading edge Monte Carlo

simulation add-ins for Excel. It uses a multiplicative congruential generator that has a stream of

23 -1 pseudo random numbers before repeating. The iteration formula uses the multiplier

62089911. Crystal Ball produces a cycle of random numbers that repeats only after several

billion trials. (Decisioneering, 2005)

The times until detection of DSs are generated for the CBM+ process by drawing a

random variable from an exponential distribution with a mean of 1 and multiplying that value by

1I-then rounding the value up to the next integer; 0, is equal to -ln(1-P1). This gives the
oC

number of downtimes until the DS is discovered. If the downtime is one, the DS is discovered

during the downtime immediately following the mission during which it was generated. The

generation for 0
L (h) is based on the maintenance schedule for the component. For example if

an arduous inspection occurs every fifty operating hours then that is reflected in an increase in

the probability a DS is discovered, PL(h), and subsequently OL(h) =-ln(1-PL (h)). The time

until detection of a DS for the Legacy process is determined by generating an exponential

random variable with mean 1, Y, and determining the smallest n such that

Y •_ 0 L (hI ) +... + OL (h, ) where h, is the MMH of the nth inspection after generation of the DS

with h, being the MMH for the inspection following the mission the DS is generated in. A

common independent exponential random variable with a mean of 1 is used to generate the time

until DS discovery for the Legacy process and for the CBM+ process. The operational time until

a DS causes a mission abort is generated by drawing an independent random variable from a

Weibull distribution Since the Weibull distribution is a continuous distribution the value is

rounded up to the nearest whole number. The time until mission abort and the time until DS

discovery are then compared and whichever event occurs first is the event that happens; the other

event is ignored. If the two discrete times are equal, the mission is aborted. Ni is the number of

DSs that originate in a given mission (i). The simulation is designed so that the Ni is identical

for both the Legacy and CBM+ processes. Crystal Ball uses the method of inverse
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transformation to generate both the Exponential and Weibull random variables. (Decisioneering,

2005)
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V. DATA ANALYSIS

A. VARYING CBM+ SENSOR EFFICIENCY

One of the measures to evaluate a component for selection to the CBM+ process is the

level of CBM+ sensor efficiency. In particular how effective must a CBM+ sensor be in

discovering DSs to result in a smaller number of aborted missions compared to that of the

Legacy process. Varying sensor efficiency is defined as varying the mean probability of

successfully discovering a particular DS, Pc, in the simulation. Appendix E contains tables

displaying the statistical summaries of the simulation output for the Legacy and CBM+ processes

as the CBM+ sensor efficiency mean value is varied from 0.99 to 0.1. The value of Pc for each

generated DS is determined by an independent draw from a Beta distribution. Table 11 displays

the beta parameter values used in the simulation.

Table 11. Pc Beta Distribution Parameters
E(X)=P, VAR X) a .

0.99 0.00037711 25 0.25252525
0.90 0.00312741 25 2.77777777
0.80 0.00496124 25 6.25
0.70 0.00571984 25 10.71428571
0.60 0.00562500 25 16.66666666
0.50 0.00490196 25 25
0.40 0.00377953 25 37.5
0.30 0.00249012 25 58.33333333
0.20 0.00126984 25 100
0.10 0.00035857 25 225

The time until a DS causes a mission abort has a Weibull distribution with mean 10 and

shape parameter ctw=l.5. The number of replications in the simulation is set to 1000. Although

Pc is randomized for each DS for the CBM+ process, the values of PL(h) are not randomized for

the Legacy process and therefore the only changes in the Legacy process observed between

simulations of different Pcs are due to the variability inherent in the stochastic nature of the

simulation. In Appendix E the statistical summaries of the simulation output are displayed and

indicate very small standard errors for the estimates of mean number of mission aborts in the

following graphs.
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Figure 6. Mean Number of Mission Aborts out of 1,250 Missions when time until Mission Aborts
has a Weibull distribution with mean 10 and a T= 1.5

Mean Number of Mission Aborts out of 1,250 Missions
when time until Mission Aborts has a Weibull distribution

with mean 10 and aw=l.5
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Figure 7. Mean Repair Times for 1,250 Missions when time until Mission Aborts has a Weibull
distribution with mean 10 and afv= 1.5
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As shown in Figures 6 and 7 the CBM+ Process has a smaller mean number of system

aborts and mean repair time than the Legacy Process until the probability of successful discovery

of a DS during a downtime for the CBM+ sensor is degraded to approximately 12-15%. This

corresponds roughly with the average of PL(h,) (n=l,2,...1,250) where h, is the MMH for the

Legacy inspection after mission n that is determined using the methodology in Chapter 4; the

baseline PL(h) is determined using the sum of the daily, preflight, and postflight inspection

MMH requirements. Since the baseline MMH is the most common MMH requirement, the

baseline PL(h) is approximately equal to the average of PL(h)s. Abort times depend upon the aw

and fiw Weibull distribution parameters selected for MA as described in Chapter 4. In the

examples listed above the mean value selected for MA'S Weibull distribution was 10 with shape

parameter ag=1.5 and scale fiw=l1.07732168. This means that on average it requires 2.5

missions for an engine's diagnostic symptom to become a mission abort situation; the variance of

the time until mission abort is 46.8059. This value was selected as a placeholder and does not

indicate an actual estimation of engine abort occurrences. However, it does serve to illustrate a

generic abort behavior as P(, is varied as seen in the previous two figures.

B. EXAMINING MISSION ABORT TIME VARIANCES

In this section we explore the effect the variance of the time from when a DS is generated

until it causes mission abort has on the mean number of mission aborts. The mean time from

when a DS is generated until it causes a mission abort is constant for all cases studied in this

section. The parameters of the Weibull distribution are varied to obtain different variances. In

this section the parameters of the beta distribution used to generate Pc, for each DS are aB=2 5 and

j 6B=. 2 5 giving an expected value of Pc equal to 0.99. The density functions of 3 different

Weibull distributions are displayed in Figures 8, 9, and 10:

Figure 8. CASE #1 Weibull Density Function (mean=10, aw=.5, figw 5 )

Weibull Density Function (mnean=l 0, a=.5, 1=5)
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The Weibull distribution whose density function is displayed in Figure 8 has expected

value equal to 10 and variance equal to 500.

Figure 9. CASE #2 Weibull Density Function (mean=10, agw==1, figv=10)

Weibull Density Function (mean=10, a=1, P=10)
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The Weibull distribution whose density function is displayed in Figure 9 has expected

value equal to 10 and variance equal to 100..

Figure 10. CASE #3 Weibull Density Function (mean=10, ag=1.5, fiw-l 1.08)

Weibull Density Function (mean=10, a=1.5, P=11.0773217)
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The Weibull distribution whose density function is displayed in Figure 10 has expected

value equal to 10 and variance equal to 46.09.

The results of simulations of the two processes utilizing the three different cases of the

Weibull distribution of the time from DS generation until it causes mission abort with the mean

Pc equal to 0.99 appear below. Summary statistics of the simulation output appearing in
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Appendix E indicate very small standard errors for the estimates of the fraction of DSs that cause

mission abort. The fraction of DSs that cause mission aborts is defined as the number of DSs

that actually cause a mission abort divided by the total number of DSs that occurred during 1,250

missions. This divisor is the sum of the DSs that caused mission aborts and DSs that did not

cause mission aborts.

CASE #1 (Weibull with mean equal to 10, variance equal to 500, aTw=0.5; fig= 5 )

The fraction of DSs that causes a mission abort in the Legacy process is 0.64; the

fraction of DSs that causes a mission abort is 0.37 in the CBM+ process. Recall that if more than

one DS can cause a mission to abort, the mission is only aborted once. This means that given

these conditions under the Legacy process a DS will result in a mission abort 64% of the time,

whereas, under the CBM+ process a DS will result in a mission abort on 37% of the time.

CASE #2 (Weibull with mean equal to 10, variance equal to 100, aw= 1; fiw 10)

The fraction of DSs that causes a mission abort in the Legacy process is 0.47; the

fraction of DSs that causes a mission abort is 0.10 in the CBM+ process. Recall that if more than

one DS can cause a mission to abort, the mission is only aborted once. This means that given

these conditions under the Legacy process a DS will result in a mission abort 47% of the time,

whereas, under the CBM+ process a DS will result in a mission abort on 10% of the time.

CASE #3 (Weibull with mean equal to 10, variance equal to 46.09, UT=1.5; figl 1.08)

The fraction of DSs that causes a mission abort in the Legacy process is 0.40; the fraction

of DSs that causes mission abort is 0.03 in the CBM+ process. Recall that if more than one DS

can cause a mission to abort, the mission is only aborted once. This means that given these

conditions under the Legacy process a DS will result in a mission abort 40% of the time,

whereas, under the CBM+ process a DS will result in a mission abort on 3% of the time.

Thus the number of mission aborts depends on more than just the mean time from when a

DS is generated until it causes mission abort. The variance associated with the mission abort

arrival time can be equally influential. The CBM+ Process which monitors every mission with a

high mean probability P(, of discovering DSs is most effective in preventing mission aborts in all

cases but does best when the variance of the time from when a DS is generated until it causes

mission abort is small.
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C. EXAMINING MISSION ABORT TIME VARIANCES WITH DEGRADED P'c

In this section, the mean probability an existing DS is discovered during a downtime (Pc)

is degraded from the value of 0.99 (aB=2 5, ,•B=. 2 5) to the smaller values of 0.50 (aB=2 5, ,•B= 2 5)

and 0.20 (aB=2 5, ,B=100) in order to study the effect of the variance of the time from when a DS

is generated until it causes a mission abort with a less effective sensor. The statistical standard

errors of the summary statistics of the simulation output are displayed in Appendix E. The

results for the Legacy Process remain as stated above since a varying Pc, does not affect the

Legacy Process. For all cases the Weibull parameters of the time until an undiscovered DS

causes a mission abort aw=1.5 and fw=l 1.08 are held constant.

CASE #1 (Weibull with mean equal to 10, variance equal to 500, aw=0.5; fw=5)

This case possesses the largest variance and results in the probability an arriving DS will

cause a mission abort for the CBM+ process equal to 0.45 (Pc=0.50) / 0.57 (Pc=0.20) of the

time. This means that given a Pc, of 0.50 that a DS will result in a mission abort 45% of the time.

Given a Pc, of 0.20, a DS will result in a mission abort 57% of the time.

CASE #2 (Weibull with mean equal to 10, variance equal to 100, aw= 1; -f=10)

This case possesses the middle variance and results in the probability an arriving DS will

cause a mission abort for the CBM+ process equal to 0.17 (Pc=0.50) / 0.35 (Pc=0.20) of the

time. This means that given a Pc, of 0.50 that a DS will result in a mission abort 17% of the time.

Given a P(, of 0.20, a DS will result in a mission abort 35% of the time.

CASE #3 (Weibull with mean equal to 10, variance equal to 46.09, ctw=l.5; P3w=l 1.08)

This case possesses the smallest variance and results in the probability an arriving DS

will cause a mission abort for the CBM+ process equal to 0.09 (Pc=0.50) / 0.25 (Pc=0.20) of the

time. This means that given a P(, of 0.50 that a DS will result in a mission abort 9% of the time.

Given a Pc, of 0.20, a DS will result in a mission abort 25% of the time.

These results of examining P(, at both 0.50 and 0.20 are consistent with the conclusions

drawn from examining mission abort arrival time variance when P(, is 0.99. Furthermore, it is

concluded that even a very poor performing sensor (i.e. Pc=0.20) when compared against the

Legacy process reduces the percentage of diagnostic symptoms that can result in mission aborts

by an average of 10% regardless of the variance of the time from when a DS is generated until it
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can cause a mission abort. When the Pc is at 0.99 the CBM+ Process reduces the percentage of

diagnostic symptoms that can result in a mission aborts by an average of 30%-35%. Legacy

process performance data used in the comparisons above for these cases is displayed in

Appendix E.

D. CBM+ FALSE POSITIVES

It is worthwhile to explore the consequences of the CBM+ sensor indicating a false

positive. Since the Army currently uses only passive sensors whose measurements are

downloaded at the conclusion of missions a false positive does not impact the mission during

which it occurs. However, a false positive will require maintenance personnel to expend

maintenance man-hours in order to determine that nothing is wrong with the component. The

time required to inspect (repair) and correctly diagnose a diagnostic symptom as a false positive

is the same as if it were an actual diagnostic symptom recognized immediately after the mission

during which it arrived. This time penalty is a random variable drawn from an exponential

distribution with a mean of 3 hours. False positives are assumed to occur according to a Poisson

process independent of the other processes. Table 12 displays the mean number of false positive

arrivals and their associated mean inspection (repair) times resulting from a simulation with

1,000 replications. The parameters of the simulation are: aB= 2 5 , j6 B=0. 2 5 (Pc=0.99); aw=1.5,

fg-=l 1.08 (mean time until mission abort is 10 missions). The total amount of repair expended

on false positives that appear during an operational time t is a compound Poisson process.

E[total repair time] = E[number of false positives] x E[repair time per false positive]

An expanded version of Table 12 appears in Appendix E annotating standard errors.
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Table 12. Simulation Results for mean number of False Positive Arrivals and mean Inspection
(Repair) Time resulting from False Positives for 1,250 missions

False CBM+ PROCESS (NUMBER OF
Positive FALSE POSITIVE ARRIVALS)

Rate
0.9999 -FP Mean: 1238.57

0.90 XFP Mean: 1115.29
0.80 XFP Mean: 990.51
0.70 XFP Mean: 866.70
0.60 XFP Mean: 743.41
0.50 XFP Mean: 620.23
0.40 XFP Mean: 495.29
0.30 YFP Mean: 372.07
0.20 XFP Mean: 247.05
0.10 XFP Mean: 124.34

0.0001 -FP Mean: 0.14

False CBM+ PROCESS (REPAIR
Positive TIME INCURRED DUE TO

Rate FALSE POSITIVE ARRIVALS)
0.9999 -FP Time Mean: 3717.41

0.90 -FP Time Mean: 3343.55
0.80 XFP Time Mean: 2969.66
0.70 XFP Time Mean: 2598.47
0.60 XFP Time Mean: 2228.17
0.50 XFP Time Mean: 1861.03
0.40 XFP Time Mean: 1490.28
0.30 XFP Time Mean: 1118.76
0.20 XFP Time Mean: 741.94
0.10 XFP Time Mean: 371.62

0.0001 1FP Time Mean: 0.42

Displayed in Table 13 are the analytical results for the number of false positive arrivals

and the resulting inspection (repair) time for 1,250 missions.

72



Table 13. Analytical Results for mean number of False Positive Arrivals and mean Inspection
(Repair) Time resulting from False Positives for 1,250 missions

False CBM+ PROCESS (NUMBER OF
Positive FALSE POSITIVE ARRIVALS)

Rate
0.9999 ZFP Mean: 1249.88

0.90 ZFP Mean: 1125.00
0.80 ZFP Mean: 1000.00
0.70 ZFP Mean: 875.00
0.60 ZFP Mean: 750.00
0.50 ZFP Mean: 625.00
0.40 ZFP Mean: 500.00
0.30 ZFP Mean: 375.00
0.20 ZFP Mean: 250.00
0.10 ZFP Mean: 125.00

0.0001 YFP Mean: 0.13

False CBM+ PROCESS (REPAIR
Positive TIME INCURRED DUE TO

Rate FALSE POSITIVE ARRIVALS)
0.9999 ZFP Time Mean: 3749.63

0.90 ZFP Time Mean: 3375.00
0.80 ZFP Time Mean: 3000.00
0.70 ZFP Time Mean: 2625.00
0.60 ZFP Time Mean: 2250.00
0.50 ZFP Time Mean: 1875.00
0.40 ZFP Time Mean: 1500.00
0.30 ZFP Time Mean: 1125.00
0.20 ZFP Time Mean: 750.00
0.10 ZFP Time Mean: 375.00

0.0001 ZFP Time Mean: 0.38

As expected the simulation results closely match the analytical results and produce a

linear relationship as the false positive rate is varied from 0.9999 (false positive arriving every

mission) to 0.0001 (false positives very rarely occurring).

Assuming that the Legacy process does not produce a false positive of its own it is useful

to note that the Legacy process incurs approximately 75 hours in repair time every 1,250

missions. The Legacy process expected repair time includes all repair times including repair time

resulting from mission aborts. Table 14 displays the mean CBM+ Process total repair time (total

repair time = diagnostic symptom repair time + false positive repair time) while varying the false

positive rate from 0.10 to 0.0001. The mean time until mission abort is 10 missions (ag=1.5,

figw=l 1.08). An expanded table including standard errors is displayed in Appendix E.
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Table 14. CBM+ Process mean Total Repair Time (including False Positive Repair Time) for
1,250 missions with (XB= 25, /3B=. 2 5

False CBM+ PROCESS (TOTAL REPAIR
Positive TIME=DS REPAIR TIME+FALSE

Rate POSITIVE REPAIR TIME)

0.10 -R+-FP Time Mean: 406.13
0.09 ZR+ZFP Time Mean: 369.59
0.08 -R+-FP Time Mean: 330.84
0.07 ZR+ZFP Time Mean: 291.50
0.06 2-R+2-FP Time Mean: 257.54
0.05 ZR+ZFP Time Mean: 221.93
0.04 -R+-FP Time Mean: 185.08
0.03 -R+ZFP Time Mean: 146.10
0.02 -R+ZFP Time Mean: 108.97
0.01 -R+-FP Time Mean: 71.91

0.0001 ZR+ZFP Time Mean: 36.06

Figure I I is a graphical display of the total mean repair time of the Legacy and CBM+

Process as the false positive rate is varied from .05 to .000 1.

Figure 11. Mean Total Repair Time for 1,250 Missions while varying the False Positive rate from
.05 to .0001

Mean Total Repair Time for 1,250 Missions while varying
the False Positive rate from .05 to .0001

S250
-200

E
p 150 ---- Legacy Process

'7" 100 --- CBM+ Process

S50

"o 0
0.00 0.01 0.02 0.03 0.04 0.05

CBM+ Process False Positive
Probability of Occurence

Figure 11 illustrates the importance of limiting the number of false positives that the

CBM+ sensor incurs. This simulation was run with a mean probability of DS discovery during a

downtime equal to Pc=0.99 (a highly accurate sensor) yet when false positive rates begin to

increase any advantage in repair time provided by the sensor is quickly lost; the parameters of
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the beta distribution for Pc are aB= 2 5 and /JB=. 2 5 . The parameters of the Weibull distribution are

aw=1.5 and fw=l 1.08 (mean time until mission abort is 10 missions).

E. LOGISTICAL IMPLICATIONS OF VARYING Pc,

It is possible to utilize this simulation to gain insights into the logistical implications of

utilizing the CBM+ Process versus the traditional Legacy Process. The following is a general

description of the logistics process. An assumption made is that once a DS occurs that the time

remaining until mission abort is known; this is very optimistic. Another assumption is that there

is only mission per day and that a mission occurs every day. This is differs from the current

implementation of CBM+ ; once a component shows degraded performance it is removed; the

time until failure is not known. For the case of a mean time until a replacement component

arrives of 3 days (assuming one mission for every day) the following process is used:

1. ADS is detected.

2. If remaining time until a mission abort is greater than or equal to the time to fly 3

missions the 3 missions will be flown. The following events occur:

a. A replacement component is ordered and arrives before there is a mission abort; there is no

time with aircraft down waiting for the replacement part (To,,). Since one mission is flown per

day, the time until the replacement component arrives is three days. This assumes both the

number of missions until mission abort is known and the time until the replacement component

arrives is constant and known. This fixed time is an approximate of the prognostics capability of

the CBM+ sensor and can be modified as further research is done in this area.

3. If the remaining time until a mission abort is less than the time to fly 3 missions, the

aircraft will not fly until the failing component is replaced. A Bernoulli random variable is

generated with probability of success PoH (probability component is on hand):

a. If a replacement component is on hand, there is no aircraft downtime waiting for the

replacement component.

b. If component is not on hand an exponential time with mean of 3 is generated to

determine TOH, (time in days spent awaiting component).

The following charts illustrate two cases. The first case is when a component requires a

mean of 3 days to arrive once ordered and the second case is when a component requires a mean
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of 10 days to arrive once ordered. Through examining these two situations conclusions can be

drawn concerning the effect of a CBM+ sensor on the component ordering time requirements.

When a DS is discovered, the number of future missions that can be flown before a mission abort

is calculated. One mission is flown per day. Thus the number of additional missions that can be

flown is compared to the mean number of days until a replacement component can arrive. If the

number of missions that can be flown without a mission abort is less than the mean number of

days until a replacement component arrives, then an independent Bernoulli random variable is

generated to determine if the replacement component is on hand. If the component is not

immediately available then an Exponential distribution is used to determine the amount of time

required for component arrival. These random numbers are independent for the Legacy and

CBM+ processes. PoHwill be used to represent the probability that a replacement component is

on hand at the location of the unit requiring the component; when a DS is discovered whether or

not a replacement component is at the location is independent from DS to DS. There is no

randomization of the probability a replacement component is available. The value of POIH will be

varied from .9999 to .0001 in order to compare the mean number of days awaiting replacement

components for both the CBM+ system and the Legacy system. The number of missions is 1,250

and there are 1,000 replications. The parameters of the CBM+ process are aB= 2 5 and /JB=. 2 5 .

The parameters of the Weibull distribution are afy=l.5, fi6w=l 1.08 (the mean time until mission

abort is 10 missions). Upon the occurrence of a mission abort or if the DS is discovered but it is

not at least 3 days before the mission abort were to occur (CASE #1) or ten days before the

mission abort were to occur (CASE #2) then a Bernoulli random variable is generated to

determine whether or not the component is on hand (Po)H) and if the component is not on hand

then an exponential distribution with mean 3 days (CASE #1) or 10 days (CASE #2) is used to

determine the number of days spent awaiting component (To,,). Summary statistics of the

simulation output appear in Appendix E. The standard errors of the mean number of days

expended until a replacement component arrives are small and this information is located in

Appendix E for all graphs listed in the remainder of Chapter 5.

1. 3 Day Mean Component Ordering Time

The first case examines three different Pc levels for the CBM+ Process. The first Pc

level is .99. The mean number of days expended awaiting replacement components as the POH is

varied from .9999 to .0001 are displayed in Figure 12. DSs causing mission aborts are included.
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Figure 12. Mean Number of Days Expended Awaiting Replacement Components where Pc=.99 and
Mean Time until replacement component arrives=3 days

Mean Number of Days Expended Awaiting Replacement Components varied
by Probability Replacement Component in Stock for 1,250 missions

Probability of CBM+ Detection = .99
Mean Order Time (Exponential) = 3 days
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Figure 12 shows that if the remaining time until component failure is known perfectly

then utilizing the CBM+ Process and having no the components on hand when Pc is .99 is

equivalent to keeping approximately enough of the components on hand under the Legacy

Process to have a replacement component immediately available 70% of the time. The reason

the mean time expended waiting for replacement components is so different between the two

processes is that since the CBM+ process discovers DSs so much earlier on average than the

Legacy process, the CBM+ process is able to order the component before the component fails.

The Legacy process does not have this advantage since it will either not detect until a mission

abort or once a DS is discovered it is too late to order the component before the component fails.

Figures 13 and 14 display the mean delay time until replacement components arrive, for Pc equal

to 0.50 (respectively 0.20); if the remaining time until component failure is known perfectly,

then the result for the case the CBM+ process has no components on hand is the same that for the

Legacy process that has enough components at the location to replace 60% (respectively 30%)

of the discovered DSs at their time of discovery.

Figure 13. Mean Number of Days Expended Awaiting Replacement Components where Pc=.50 and
Mean Order Time=3 days
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Mean Number of Days Expended Awaiting Replacement Components
varied by Probability Replacement Component in Stock for 1,250 missions

Probability of CBM+ Detection = .50
Mean Order Time (Exponential) = 3 days
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Figure 14. Mean Number of Days Expended Awaiting Replacement Components where Pc=.20 and
Mean Order Time=3 days

Mean Number of Days Expended Awaiting Replacement Components
varied by Probability Replacement Component in Stock

Probability of CBM+ Detection = .20
Mean Order Time (Exponential) = 3 days

20.00
S18.00
, 16.00

0 14.000 3 Eo 1 2 .0 0.o o. .
12.00 -<-( Legacy Process

M.0 - 10.00
= --- CBM+ Process"z 0 8.00

X 6.00
SW 4.00

¢ 2.00
0.00

0 0.2 0.4 0.6 0.8 1

Probability Replacement Component in Stock

"78



2. 10 Day Mean Component Ordering Time

If the mean time of the exponential ordering time is increased to 10 days this will provide

insight into the advantage of utilizing the CBM+ Process for a component that is not as readily

available in the Army's logistical system.

A review of Figures 15, 16, and 17 show that if the remaining time to component failure

is known when the P, is .99 / .50 / .20 and no components are kept on hand that the equivalent

mean wait time for ordered components is the same for keeping enough on hand under the

Legacy Process to have this component available 30% / 20% / 10% of the time respectively.

This suggests that if a component is to be chosen for entry in the CBM+ Process it is more

beneficial to choose a component that can be shipped faster and not one that requires longer to

arrive to the organization requiring the replacement component. The advantage that the CBM+

Process delivers is that it gives the maintainer advance warning that a component will fail in the

near future. If the component can be ordered when a diagnostic symptom is recognized and sent

to the organization requiring the component before the component causes mission abort then

great savings in on hand stockage requirements can be realized; this assumes that the remaining

time until mission abort can be predicted with accuracy. If the aircraft is grounded until

replacement parts become available then the CBM process is comparable to the Legacy process.

However, if the component requires a longer time to arrive then this advantage that the CBM+

Process possesses over the Legacy Process still exists but is diminished.

Figure 15. Mean Number of Days Expended Awaiting Replacement Components where Pc=.99 and
Mean Order Time= 10 days

Mean Number of Days Expended Awaiting Replacement
Components varied by Probability Replacement Component in

Stock for 1,260 missions
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Figure 16. Mean Number of Days Expended Awaiting Replacement Components where Pc=.50 and
Mean Order Time= 10 days

Mean Number of Days Expended Awaiting Replacement Components

varied by Probability Replacement Component in Stock for 1,250
missions
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Figure 17. Mean Number of Days Expended Awaiting Replacement Components where Pc=.20 and
Mean Order Time= 10 days

Mean Number of Days Expended Awaiting Replacement Components varied
by Probability Replacement Component in Stock for 1,250 missions
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VI. RESULTS AND CONCLUSIONS

A. APPLICATIONS

A model of the Legacy maintenance/repair process and the CBM+ maintenance /repair

process has been presented. The model assumes that prior to a component failure, a measurable

diagnostic symptom (DS) appears. Once a DS is generated, it remains measurable and can be

detected by a CBM+ sensor or by physical inspection (Legacy process). The model output

includes the number of missions that are aborted and the repair time incurred by component

failures and false positives. By comparing two or more different components it is possible to

determine which component will produce more favorable results in terms of mission abort rates

and repair time expenditures by introducing it into the CBM+ process. Furthermore, patterns and

behaviors can be observed as conditions vary thereby providing insight and information to be

used by the decision-maker.

The following factors are influential to the successful introduction of a component in a

CBM+ program:

1. Since the CBM+ sensor is continually monitoring a component, the sensor doesn't

have to have an extremely high level of probability of detection of diagnostic symptoms; this

result assumes that the probability of detection of a DS is independent from mission to mission.

It also assumes that once a DS has occurred it remains detectable; that is measurable evidence of

the DS is not intermittent. Simply by providing a level of detection for every mission that

exceeds the baseline (the daily pre-flight and post-flight inspections) probability of detection

provided by the Legacy Process the CBM+ Process will show a substantial increase in the

maintainer's ability to recognize and mitigate impending mission aborts. However, this

advantage will decrease if the sensor produces false alarms.

2. When selecting a component for entry in the CBM+ Process more than just a

comparison of the mean times between the arrival of a diagnostic symptom until development of

a mission abort are required. The variance of the mean time until mission abort given that a

diagnostic symptom has occurred is equally important. A CBM+ sensor may be less effective if

the time from when a DS is generated until it causes a mission abort has a high variance. This

finding remains true for degraded levels of mean probability a DS is discovered, Pc. Data
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concerning the time from when a DS is generated until component failure would be very

informative in judging whether to include a component in the CBM+ process.

3. Whereas a component's CBM+ sensor doesn't need an extremely high probability of

detection that a DS has occurred, it is extremely important that false positives be kept to

extremely low levels. Otherwise, the advantage of continual inspection using sensors begins to

work against the CBM+ Process. If a component whose CBM+ sensor provides a fair number of

false positives (i.e. 5% of the missions result in a false positive) the time spent by maintenance

personnel confirming that the DS was in fact a false positive quickly overshadows any gains in

actual repair times.

To reiterate some factors to consider when considering introducing a component to the

CBM+ process from Chapter 3:

1. How often does the component fail during active flight hours?

It is preferable to introduce a component that fails often versus components that rarely

fail.

2. What are the consequences of a component failing?

It is preferable to introduce a component that possesses severe consequences for failure

versus a component that is inconsequential in its failure.

3. What is the difficulty level of the inspection that would be alleviated by CBM+?

If an inspection is extremely difficult and resource intensive to perform, it would be

preferable to have this inspection replaced by CBM+ versus an inspection that is simple and easy

to perform.

4. Is a CBM+ sensor feasible for a component?

If measurements cannot be taken to assess the degradation of the component before it

fails, i.e. no useful DS, then that component would not be a good CBM+ candidate.

Furthermore, the time from when the occurrence of measurable evidence of impending failure

until failure should be long enough to detect the impending failure and take maintenance action.
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5. What is the reliability of the CBM+ sensor, the difficulty of inspecting the CBM+

sensor, and the effect of the CBM+ sensor on performance of the component being monitored?

Is there a CBM+ sensor currently developed for a component? What is the cost of the sensor?

B. RECOMMENDATIONS FOR FUTURE STUDY

Models for the following random variables are selected as placeholders. Collection and

analysis of data are needed to provide more appropriate models.

1. MA: (time from when a DS occurs until it causes a mission abort) A Weibull

distribution with a mean of 10 hours was selected. The distributional form is conjectural.

Experiments need to be designed and conducted to collect data concerning the time from when a

DS is generated by a component until the DS causes the component to fail. It is also important to

collect data on the time from when a DS is generated until the sensor detects the DS.

2. R0 : (initial repair time) An Exponential distribution with a mean of 3 hours was

selected. This provided the initial mean repair time incurred upon a DS discovery.

3. RI: (subsequent fixed repair time) A fixed value of 3 hours was chosen. This provided

for an additional repair time if the DS was not discovered after the first mission in which it

arrived. This value was only applied once. For example, R1 was the same if the DS was

discovered after the second mission it appeared or the tenth mission after it appeared.

4. A0 : (initial repair time resulting from a mission abort) An Exponential distribution

with a mean of 5 hours was selected. This provided mean repair time incurred upon a mission

abort.

5. A1 : (subsequent fixed repair time resulting from a mission abort) A fixed value of 5

hours was chosen. This provided for an additional repair time if the DS that caused the mission

abort was not discovered after the first mission in which it arrived. This value was only applied

once. For example, A, was the same if the DS was discovered after the second mission it

appeared or the tenth mission after it appeared.

It is also important to conduct a study of the reliability and maintainability of the CBM+ sensors.

It is envisioned that CBM+ sensors will eliminate the need for scheduled inspection and

maintenance. A sensor may be able to detect the occurrence of a DS; however, if the sensor is

experiences failure often and is difficult to inspect and maintain, the effectiveness of the sensor
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will be diminished. In addition it is important to study the ability of the logistics process to

respond to the sensor measurements. If it takes a long time to analyze sensor measurements

and/or obtain replacement components, then the attractiveness of introducing a component into

CBM is lessened. The cost of the sensor also needs to be considered.
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EXHIBIT 2, APPENDIX A AH-64/UH-60 701C ENGINE DATA

SN El6SN MODEL Date REPNUM 0EN LIFE TSN FTYPE FMODE Failure FAMILY PREV_F

GEE761067 9126370 MH-60K 5/17/2001 1 0 944 944 Cl REMOVAL 537 LOW POWER OR TORQUE Other

GEE761067 8926194 MH-60K 2/19/2002 2 0 231 1178 Cl REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE761067 9426547 MH-60L 1/8/2003 3 0 246 1426 Cl REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE761067 9026285 MH-60L 3/9/2004 4 0 285 1712 Cl REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE761067 9026285 MH-60L 8/5/2005 4 0 372 2085 ClREMOVAL 374 INTERNAL FAILURE Assembly 537

GEE761158 9026295 UH-60L 10/11/2001 1 0 1873 1873 Cl REMOVAL 537 LOW POWER OR TORQUE Other

GEE761158 9226426 UH-60L 9/26/2002 2 0 256 2129 ClREMOVAL 374 INTERNAL FAILURE Assembly 537

GEE761158 8900227 AH-64A 3/15/2003 3 0 245 2374 ClREMOVAL 585 SHEARED Op/FOD 374

GEE761158 9626689 UH-60L 9/10/2003 4 1 1034 2376 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 585

GEE761259 9126329 UH-60L 2/14/2001 1 0 1573 1573 ClREMOVAL 790 OUT OF ADJUSTMT,OUT Tol/Bal

GEE761259 8900235 AH-64A 3/11/2003 2 0 412 1986 Cl REMOVAL 372 METAL ON MAGNETIC 790

GEE761259 UNKNOWN 2/10/2004 3 0 249 2235 C3C2ACT 20 WORN EXCESSIVELY Rem 372

GEE761259 9000482 AH-64A 9/15/2004 4 1 339.8 2349 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 0

GEE761705 9705043 AH-64D 2/22/2002 1 0 1729 1729 Cl REMOVAL 705 BEYOND SPECIFIED Tol/Bal

GEE761705 UNKNOWN 11/29/2003 2 0 254 1988 C3C2ACT 181 LOW COMPRESSION Rem 705

GEE761705 UNKNOWN 8/19/2004 3 0 97 2085 C3C2ACT 855 HEAT DAMAGE Rem 0

GEE761705 5201 AH-64D 8/19/2004 4 1 305.8 2085 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 0

GEE761735 9000294 AH-64A 12/11/2001 1 0 1769 1769 ClREMOVAL 374 INTERNAL FAILURE Assembly

GEE761735 9000294 AH-64A 7/18/2003 2 0 393 2163 Cl REMOVAL 329 STARTING STALL 374

GEE761735 UNKNOWN 2/4/2005 3 0 165 2330 C3C2ACT 230 DIRTY Rem 329

GEE761735 9926829 UH-60L 2/8/2005 4 1 106.5 2330 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 0

GEE761745 9000306 AH-64A 10/24/2002 1 0 1812 1812 Cl REMOVAL 519 SURGED

GEE761745 UNKNOWN 8/11/2003 2 0 106 1920 C3C2ACT 537 LOW POWER OR TORQUE Rem 519

GEE761745 UNKNOWN 1/24/2004 3 0 125 2045 C3C2ACT 230 DIRTY Rem 0

GEE761745 9326486 UH-60L 3/2/2004 4 0 5 2050 Cl REMOVAL 537 LOW POWER OR TORQUE Other 0

GEE761745 9326525 UH-60L 2/1/2005 4 0 284 2336 ClREMOVAL 374 INTERNAL FAILURE Assembly 537

GEE761745 9626678 UH-60L 9/10/2005 4 1 136.5 2340 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 374

GEE761816 9126373 MH-60K 9/6/2002 1 0 2055 2055 Cl REMOVAL 537 LOW POWER OR TORQUE Other

GEE761816 9026293 UH-60L 5/22/2003 2 0 129 2184 Cl REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE761816 9126363 MH-60L 11/24/2003 3 0 144 2329 Cl REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE761816 9126360 MH-60L 6/5/2004 4 0 61 2390 Cl REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE761816 8926184 MH-60L 5/9/2005 4 0 236 2626 Cl REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE761816 8926184 MH-60L 6/8/2005 4 1 118.7 2626 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 537

GEE762055 9126379 MH-60K 4/22/2002 1 0 2027 2027 Cl REMOVAL 537 LOW POWER OR TORQUE Other

GEE762055 9126379 MH-60K 3/24/2003 2 0 239 2267 Cl REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE762055 UNKNOWN 9/17/2005 3 0 329 2841 C3C2ACT 537 LOW POWER OR TORQUE Rem 537

GEE762055 305400 AH-64D 1/3/2006 4 1 2838.9 2841 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 0

GEE762287 UNKNOWN 1/8/2001 1 0 1379 1379 C3C2ACT 537 LOW POWER OR TORQUE Rem

GEE762287 9826825 UH-60L 8/20/2002 2 0 487 1866 Cl REMOVAL 537 LOW POWER OR TORQUE Other 0

GEE762287 8926182 UH-60L 9/10/2003 3 0 172 2042 Cl REMOVAL 180 CLOGGED 537

GEE762287 9026294 UH-60L 5/12/2004 4 0 223 2265 Cl REMOVAL 537 LOW POWER OR TORQUE Other 180

GEE762287 UNKN@L2 UNKNOWN 1/4/2005 4 1 250.6 2267 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 537

GEE762385 9326503 UH-60L 9/25/2002 1 0 1549 1549 Cl REMOVAL 290 FAILS HeaterBk

GEE762385 9426583 UH-60L 2/2/2004 2 0 50 1599 Cl REMOVAL 70 BROKEN Broken 290

GEE762385 9426558 UH-60L 2/18/2005 3 0 346 1945 Cl REMOVAL 307 OIL LEAK 70

GEE762385 9426587 UH-60L 7/27/2005 4 1 283.1 1945 INSTALLED 307 OIL LEAK 307

GEE762436 UNKNOWN 2/16/2001 1 0 1413 1413 C3C2ACT 381 LEAKING (LIQUID) Rem
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GEE762436 UNKNOWN 10/11/2003 2 0 514 1927 ClREMOVAL 537 LOW POWER OR TORQUE Other 0

GEE762436 305368 AH-64D 5/5/2005 3 0 102 2067 Cl _REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE762436 205319 AH-64D 5/17/2005 4 1 241.2 2067 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 537

GEE762440 UNKNOWN 11/13/2002 1 0 1488 1488 C3C2ACT 537 LOW POWER OR TORQUE Rem

GEE762440 9226452 UH-60L 10/28/2003 2 0 236 1724 Cl REMOVAL 537 LOW POWER OR TORQUE Other 0

GEE762440 205295 AH-64D 11/17/2004 3 0 251 1975 ClREMOVAL 374 INTERNAL FAILURE Assembly 537

GEE762440 9026250 UH-60L 11/28/2005 4 1 23.9 1978 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 374

GEE762523 UNKNOWN 12/9/2002 1 0 1432 1432 C3C2ACT 537 LOW POWER OR TORQUE Rem

GEE762523 9226452 UH-60L 6/6/2003 2 0 124 1556 Cl REMOVAL 181 LOW COMPRESSION Debond 0

GEE762523 9626685 UH-60L 11/3/2004 3 0 352 1921 ClREMOVAL 381 LEAKING (LIQUID) AirLeak 181

GEE762523 9905114 AH-64D 9/15/2005 4 1 209.6 1926 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 381

GEE762606 9426561 UH-60L 9/9/2003 1 0 2115 2115 Cl _REMOVAL 537 LOW POWER OR TORQUE Other

GEE762606 9426561 UH-60L 12/9/2003 2 0 14 2129 Cl REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE762606 9526597 UH-60L 3/1/2004 3 0 5 2134 Cl REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE762606 9426552 UH-60L 7/13/2004 4 1 576.8 2136 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 537

GEE762993 UNKNOWN 11/22/2002 1 0 1082 1082 C3C2ACT 537 LOW POWER OR TORQUE Rem

GEE762993 UNKNOWN 10/23/2003 2 0 149 1230 C3C2ACT 181 LOW COMPRESSION Rem 0

GEE762993 9705046 AH-64D 4/30/2004 3 0 135 1365 Cl _REMOVAL 537 LOW POWER OR TORQUE Other 0

GEE762993 9705046 AH-64D 5/20/2004 4 1 1159.6 1486 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 537

GEE763028 9026269 UH-60L 2/2/2002 1 0 956 956 Cl REMOVAL 307 OIL LEAK

GEE763028 9626674 UH-60L 10/26/2004 2 0 140 1096 Cl REMOVAL 315 RPM 307

GEE763028 9626682 UH-60L 12/27/2004 3 0 0 1096 C1 _REMOVAL 381 LEAKING (LIQUID) AirLeak 315

GEE763028 9626676 UH-60L 9/23/2005 4 0 374 1470 Cl REMOVAL 537 LOW POWER OR TORQUE Other 381

GEE763102 9705041 AH-64D 6/29/2005 1 0 0 0 Cl REMOVAL 537 LOW POWER OR TORQUE Other

GEE763102 9705041 AH-64D 6/29/2005 2 0 1970 1970 Cl REMOVAL 537 LOW POWER OR TORQUE Other 537

GEE763102 UNKNOWN 9/11/2005 3 0 2 1972 C3C2ACT 537 LOW POWER OR TORQUE Rem 537

GEE763102 305347 AH-64D 12/31/2005 4 1 0 1972 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 0

GEE763260 9826805 UH-60L 2/23/2001 1 0 696 696 ClREMOVAL 374 INTERNAL FAILURE Assembly

GEE763260 9826805 UH-60L 2/21/2002 2 0 271 967 Cl REMOVAL 537 LOW POWER OR TORQUE Other 374

GEE763260 9826805 UH-60L 6/16/2003 3 0 499 1469 Cl REMOVAL 855 HEAT DAMAGE HeaterBk 537

GEE763260 9426587 UH-60L 10/20/2003 4 0 171 1640 Cl REMOVAL 537 LOW POWER OR TORQUE Other 855

GEE763260 9605015 AH-64D 1/10/2005 4 1 573.5 1643 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 537

GEE763301 9826823 UH-60L 5/8/2003 1 0 983 983 Cl REMOVAL 290 FAILS HeaterBk

GEE763301 9826805 UH-60L 8/30/2003 2 0 163 1146 Cl REMOVAL 20 WORN EXCESSIVELY Erosion 290

GEE763301 9826826 UH-60L 1/15/2004 3 0 134 1280 Cl_REMOVAL 374 INTERNAL FAILURE Assembly 20

GEE763301 9026294 UH-60L 5/27/2004 4 0 35 1318 Cl_REMOVAL 105 LOOSE BOLTS, NUTS, Assembly 374

GEE763301 8926182 UH-60L 12/30/2004 4 0 58 1376 ClIREMOVAL 381 LEAKING (LIQUID) AirLeak 105

GEE763301 9526603 UH-60L 4/19/2005 4 1 115 1378 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 381

GEE763383 9426558 UH-60L 3/8/2003 1 0 742 742 Cl REMOVAL 537 LOW POWER OR TORQUE Other

GEE763383 9926830 UH-60L 8/25/2004 2 0 513 1255 ClREMOVAL 513 STALLS, COMPRESSOR 537

GEE763383 9226448 UH-60L 11/16/2004 3 0 1 1256 ClREMOVAL 513 STALLS, COMPRESSOR 513

GEE763383 9126332 UH-60L 8/10/2005 4 1 104.2 1259 INSTALLED 799 NO DEFECT-SERVICEABLE NoDefect 513

GEE763401 9426575 UH-60L 12/1/2001 1 0 422 422 ClREMOVAL 381 LEAKING (LIQUID) AirLeak

GEE763401 9426569 UH-60L 3/27/2003 2 0 266 689 ClREMOVAL 381 LEAKING (LIQUID) AirLeak 381

GEE763401 9426568 UH-60L 9/11/2003 3 0 3 692 ClREMOVAL 381 LEAKING (LIQUID) AirLeak 381

GEE763401 9426577 UH-60L 11/7/2003 4 0 4 696 Cl REMOVAL 307 OIL LEAK 381

GEE763401 9526649 UH-60L 7/14/2005 4 0 108 806 Cl_REMOVAL 513 STALLS, COMPRESSOR 307
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EXHIBIT 2, APPENDIX B ESTIMATED INTENSITY FUNCTIONS USING ENGINES

WITH 3 OR MORE OBSERVED FAILURES

The table and figure in this Appendix are taken from Professor Patricia A. Jacobs' "A

Nonhomogeneous Poisson process model (NHPP) for engine data" written 27 March 2006.

Estimated intensity function for engines with at least 3 recorded failures

Number of failures
Age interval Estimated failure rate(number of engines)

2
0 500 0.00019

(21)

10
501 1000 0.001

(20)

19
1001 1500 0.0019

(20)

21
1501 2000 0.0023

(18)

16
2001 2500 0.0036

(9)

2
2501 3000 0.002

(2)
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EXHIBIT 2, APPENDIX C ESTIMATION OF 7 AND 6

Let {N(t);t >_ O} be a NHPP with mean value function A(/) y=1 having intensity function

, (t) =y3-1. There are K systems. The kth system has nk observed times of failure; the ith

failure occurs at time t ik. The kth system is observed for a time Tk,. Maximum likelihood can be

used to estimate the parameters.

The likelihood function is

L nit

L = 1fl-- (t )exp{-A(Tk,)} (A1)
k=1 i=1

Taking logarithms results in the log likelihood

K K K n1  K

9(y,3) = In (y)nk +±In(3)Znk +(3-1)Zjtik Y (A2)
k=1 k=1 k=1 i=1 k=1

Partial differentiation of the log-likelihood results in

g(y,3) 1 K K
nk - -Z (A3)

0;/ 7 k=1 k=1

Setting the partial derivative equal to 0 and solving results in

K

k=1 (A4)"-K
Zr:
k=1
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D((y,)_ 1 K K nk K
I Z nA +Z I Ji _;YZTkAýlin(Tk,)

0k=1 k=1 i=1 k=1

K

Snk K (A5)
K k Kký

k=1f k=1 zi=1 ~' k=1

k=1

Setting the partial derivative equal to 0 results in an equation that can be solved numerically

providing an estimate of 3 and y.

The second partial derivative of the log-likelihood result in

- Tk k (A6)
D&?y7 k=-

o2 K
-2 Y k (A7)

0;/ k=1

(2 K K2

2- 2 .-nkZTkLlnTk)] (A8)
D3 3 k=1 k=1

The second derivatives can be used to obtain estimates of the asymptotic variance of estimates of

y and 3 using Fisher information evaluated at the parameter estimates. (Crowder, 1991)
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EXHIBIT 2 APPENDIX D VISUAL BASIC FOR APPLICATIONS CODING

Sub CBM()

CBM Macro

Macro recorded 3/31/2006 by Stephen E. Gauthier

Documentation: LT-Jason Kratz (NPS student) provided exceptional

assistance with this code by proofreading and finding many ways to

improve upon it's processing speed.

'This keeps workbook from updating every iteration

Application. ScreenUpdating = False

With Application

.Calculation = xlManual

.MaxChange = 0.001

End With

ActiveWorkbook.PrecisionAsDisplayed = False

'This computes Theta L and sets number of missions to 1250

Sheets("Legacy Process").Select

NumberMissions = 1250

NewMissionLength = 0

Worksheets("Legacy Process').Range(Cells(8, 1), Cells(7 + NumberMissions,

1)).ClearContents

Dim ThreeJArray(9) As Double

Dim FourJArray(9) As Double

For j = 1 To 9

ThreeJArray(j) = Worksheets("Legacy Process").Cells(3, j)

FourJArray(j) = Worksheets("Legacy Process").Cells(4, j)

Next j

For) i = 1 To NumberMissions

NewMissionLength = NewMissionLength + 4

For j = 1 To 5
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If ThreeJArray(j) =0 Then

Worksheets("Legacy Process").Cells(7 + i, 1) =FourJArray(1),

End If

If ThreeJArray(j) > 0 Then

multiplier = 0

multiplier =

Ajpplication.WorksheetFunction.RoundDown (NewMissionLength /ThreeJArray (j), 0)

Worksheets ("Legacy Process") .Cells(1, 1) = multiplier

End If

If NewMissionLength =multiplier *ThreeJArray(j) Then

Worksheets("Legacy Process").Cells(7 + i, 1) = FourJArray(j)

ElseIf NewMissionLength - 1 = multiplier *ThreeJArray(j) Then

Worksheets("Legacy Process").Cells(7 + i, 1) = FourJArray(j)

ElseIf NewMissionLength - 2 = multiplier *ThreeJArray(j) Then

.Worksheets("Legacy Process").Cells(7 + i, 1) = FourJArray(j)

ElseIf NewMissionLength - 3 = multiplier *ThreeJArray(j) Then

Worksheets("Legacy Process").Cells(7 + i, 1) = FourJArray(j)

End If

Next j

Nexti

'This clears Data Worksheet below Row 24 and left of and including column 36

Sheets ("Data").Select

M = NumberMissions

N = 36

Worksheets("Data") .Range(Cells(25, 1), Cells(24 + M, N)) .ClearContents

'This sets the number of iterations to perform

Replications = Worksheets ("RVs") .Cells (1, 2)

For v = 1 To Replications

Calculate
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'This clears N, M, R, and AS Columns of Legacy Process Worksheet

Sheets("'Legacy Process") .Select

N = 3

Worksheets("'Legacy Process").Range(CellsC8, 12), Cells(7 + M, 11 +

N)) .ClearContents

Worksheets("'Legacy Process") .RangeCCells(8, 24), Cells(7 + M, 23 +

N)) .ClearContents

Worksheets("Legacy Process").Range(Cells(8, 35), Cells(7 + M, 34 +

N)) .ClearContents

Worksheets("'Legacy Process").Range(Cells(8, 46), Cells(7 + M, 45 +

N)) .ClearContents

'This computes Sum of Dij and Rij for cases <= and > M

Sheets("'Legacy Process") .Select

NCount =0

RTime =0

N= 7

For i 1 To M

If Worksheets("'Legacy Process").Cells(7 + i, 4) > 0 Then

NewNCount =0

NWount = 0

NewNCount2 =0

NCount2 = 0

NewNCount3 = 0

NCount3 = 0

NewNCount4 = 0

NCount4 =0

NewRTime =0

RTixne = 0

NewRTime2 = 0

RTime2 = 0

NewASTime = 0

ASTime =0

ASTime2 =0

NewASTime2 = 0

temp2 = Worksheets("Legacy Process").Cells(7 + i, 2)
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For j = 1 To N

ternp4 = Worksheets(I'Legacy Process").Cells(7 + i, 4 + j)

tempiS = Worksheets("Legacy Process').Cells(7 + i, 16 + j)

ternp27 = Worksheets(I'Legacy Process") .Cells(7 + i, 27 + j)

temp38 = Worksheets("'Legacy Process").Cells(7 + i, 38 + j)

If temp4 < templ6 Then

If teinp4 > 0 And temp2 + temp4 -= M + 1 Then

NewNCount = 1

NCount = NewNCount + NCount

End If

If teinp4 > 0 And temp2 + teinp4 > M + 1 Then

NewNCount2 = 1

NCount2 = NewNCount2 + NCount2

End If

If temp2 + teinp4 <= NumberMissions + 1 Then

NewRTime = ternp27

RTime = NewRTime + RTirne

NewASTirne = temp38

ASTime = NewASTime + ASTime

End If

If temp2 + temp4 > NumberMissions +t 1 Then

NewRTiine2 = temp27

RTime2 = NewRTime2 + RTime2

NewASTiine2 = ternp38

ASTime2 = NewASTime2 + ASTiine2

End If

Else

If templ6 > 0 And teinp2 +- templE <= M + 1 Then

NewNCount3 = 1

NCount3 = NewNCount3 + NCount3

End If

If templ6 > 0 And temp2 + templE > M + 1 Then

NewNCount4 = 1

NCount4 = NewNCount4 + NCount4

End If

If temp2 + templE <= NumberMissions + 1 Then
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NewRTiine = temp27

RTime = NewRTime + RTime

NewASTime = temp38

ASTiine = NewASTime + ASTime

End If

If teinp2 + teinp16 > NumberMissions + 1 Then

NewRTime2 = teinp27

RTiine2 = NewRTime2 + RTime2

NewASTime2 = temp38

ASTime2 = NewASTime2 +- ASTime2

End If

End If

Next j

Worksheets("'Legacy Process").Cells(7 + i, 12) = NCount

Worksheets("'Legacy Process").Cells(7 + i, 13) = NCount2

Worksheets("'Legacy Process").CellsC7 + i, 24) = NCount3

Worksheets("Legacy Process").Ce11s(7 + i, 25) = NCount4

Worksheets("'Legacy Process").Cells(7 + i, 35) = RTime

Worksheets("'Legacy Process").Cells(7 + i, 36) = RTiine2

Worksheets("Legacy Process").Cells(7 + i, 46) = ASTime

Worksheets("'Legacy Process') .Cells(7 + i, 47) = ASTime2

End If

WorksheetsC"'Legacy Process").Cells(7 + i, 14) = Worksheets(I"Legacy

Process").Cel1s(7 + i, 12) + Worksheets("'Legacy Process').Cells(7 + i, 13)

Worksheets("'Legacy Process").Cells(7 + i, 26) = Worksheets(I"Legacy

Process").Cel1s(7 + i, 24) + Worksheets("'Legacy Process').Cells(7 + i, 25)

Worksheets("'Legacy Process") .Cells(7 +- i, 37) = Worksheets("'Legacy

Process").Cells(7 + i, 35) + Worksheets("'Legacy Process").Cells(7 + i, 36)

Worksheets("'Legacy Process").Cells(7 + i, 48) = Worksheets("'Legacy

Process").Cells(7 + i, 46) + Worksheets("'Legacy Process").Cells(7 + i, 47)

Next i

'This determines if there was an immediate Mission Abort

Sheets ("RVs") .Select
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For i = 1 To M

If Application.WorksheetFunction.Countlf(Range(Cells(4 + i, 6), Cells(4

+ i, 12)), "1= 1'1) >= 1 Then

Sheets("'Legacy Process' ).Select

Worksheets("'Legacy Process").Cells(7 + i, 16) = 1

Sheets ("RVs").Select

Else

Worksheets(I'Legacy Process') .Cells(7 + i, 16) = 0

End If

Next i

'This produces the summed outputs for the Legacy Spreadsheet

Sheets("'Legacy Process") .Select

Worksheets(I'Legacy Process") .Cells(l, 15)

Application.WorksheetFunction.Sumr(Range(Cells(8, 12), Cells(7 + M, 12)))

Worksheets("'Legacy Process") .Cells(2, 15)=

Application.WorksheetFunction.Sumn(Range(Cells(8, 13), Cells(7 + M, 13)))

Worksheets("'Legacy Process") .Cells(3, 15) =

Application.WorksheetFunction.Sumf(Range(Cell5 (8, 14), Cells(7 + M, 14)))

Worksheets ("Legacy Process") .Cells (4, 15) =

Application.WorksheetFunction.Sumf(Range(Cells(8, 24), Cells(7 + M, 24)))

Worksheets("'Legacy Process") .Cells(5, 15) =

Application.WorksheetFunction.Sumf(Range(Cells(8, 25), Cells(7 + M, 25)))

Worksheets("'Legacy Process") .Cells(6, 15) =

Application.WorksheetFunction.Sum(Range(Cells(8, 26), Cells(7 + M, 26)))

Worksheets ("Legacy Process") .Cells (1, 18)=

Application.WorksheetFunction.Sum(Range(Cells(8, 35), Cells(7 + M, 35)))

Worksheets("'Legacy Process") .Cells(2, 18)=

Application.WorksheetFunction.Sumf(Range(Cells(8, 36), Cells(7 + M, 36)))

Worksheets("'Legacy Process") .Cells(3, 18)

Application.WorksheetFunction.SuIT(Raflge(Cells(8, 37), Cells(7 + M, 37)))

Worksheets("'Legacy Process") .Cells(4, 18) =

Application.WorksheetFunction.Sumf(Range(Cells(8, 46), Cells(7 + M, 46)))

Worksheets ("Legacy Process") .Cells (5, 18)

Application.WorksheetFunction.Sum(Range(Cells(8, 47), Cells(7 + M, 47)))

Worksheets("'Legacy Process") .Cells(6, 18) =

Application.WorksheetFunction.Sumr(Range(Cells(8, 48), Cells(7 + M, 48)))
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'This clears Summed D, M, R, and AS Columns of CBM+ Process Worksheet

Sheets("CBM+ Process") .Select

N = 3

Worksheets("CBM+ Process").Range(Cells(8, 12), Cells(7 + M, 11 +

N)) .ClearContents

Worksheets("CBM+ Process").Range(Cells(8, 24), Cells(7 + M, 23 +

N)) .ClearContents

Worksheets("CBM+ Process").Range(Cells(8, 35), Cells(7 + M, 34 +

N)) .ClearContents

Worksheets("CBM+ Process").Range(Cells(8, 46), Cells(7 + M, 45 +

N)) .ClearContents

'This computes Sum of Dij and Sum of Rij for cases <= and > M

Sheets("1CBM+ Process") .Select

NCount = 0

M =NumberMissions

N 7

For i = 1 To M

If Worksheets("CBM+ Process").Cells(7 + i, 4) > 0 Then

NeWNCount =0

NCount = 0

NewNCount2 =0

NCount2 = 0

NewNCount3 = 0

NCount3 = 0

NewNCount4 = 0

NCount4 =0

NewRTixne =0

RTime = 0

NewRTime2 = 0

RTime2 = 0

NewASTime = 0

ASTime = 0

ASTime2 =.0

NewASTime2 = 0
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temP2 =Worksheets('CBM+ Process").Cells(7 + i, 2)

For j = 1 To N

temP4 =Worksheets('CBM+ Process").Cells(7 + i, 4 + j)

teinpl6 =Worksheets("CBM-i Process').Ce11s(7 + i, 16 + j)

temp27 =Worksheets("CBM-i Process'L.Cells(7 + i, 27 + j)

temp38 =Worksheets("CBM-s Process'1.Cells(7 + i, 38 + j)

If temp4 < templ6 Then

If ternp4 > 0 And temp2 + temp4 <= M + 1 Then

NeWNCount = 1

NCount = NeWNCount + NCount

End If

If temp4 > 0 And temp2 + temp4 > M + 1 Then

NewNCount2 = 1

NCount2 = NewNCount2 + NCount2

End If

If teinp2 + temp4 <= NumberMissions + 1 Then

NewRTime = teinp27

RTime = NewRTime + RTiine

NewASTiine = temp38

ASTime = NewASTime + ASTime

End If

If texnp2 +- temp4 > NumberMissions + 1 Then

NewRTime2 = temp27

RTime2 = NewRTime2 + RTime2

NewASTime2 = temp38

ASTime2 = NewASTime2 + ASTime2

End If

Else

If templ6 > 0 And teinp2 + templ6 <= M + 1 Then

NewNCount3 = 1

NCount3 = NewNCount3 + NCount3

End If

If templ6 > 0 And temp2 + templE > M + 1 Then

NewNCount4 = 1

NCount4 = NewNCount4 + NCount4

End If
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If ternp2 + teinpl6 <= NumberMissions +- 1 Then

NewRTime =temp27

RTime = NewRTiine + RTime

NewASTime = teinp38

ASTiine = NewASTime + ASTime

End If

If temp2 + templ6 > NumberMissions + 1 Then

NewRTiine2 = temp27

RTime2 = NewRTime2 + RTime2

NewASTime2 = temp38

ASTime2 = NewASTime2 + ASTime2

End If

End If

Next j

Worksheets("CBM+ Process") .Cells(7 + i, 12) = NCount

Worksheets("CBM+ Process").Cells(7 + i, 13) = NCount2

Worksheets("CBM+ Process").Cells(7 + i, 24) = NCount3

Worksheets("CBM+ Process").Cells(7 + i, 25) = NCount4

Worksheets("CBM+ Process").Cells(7 + i, 35) = RTime

Worksheets("CBM+ Process") .Cells(7 + i, 36) = RTime2

Worksheets("CBM+ Process") .Cells(7 + i, 46) = ASTime

Worksheets("CBM+ Process").Cells(7 + i, 47) = ASTime2

End If

Worksheets("CBM+ Process").Cells(7 + i, 14) = Worksheets("CBM+

Process").Cells(7 + i, 12) + Worksheets("CBM+ Process").Cells(7 + i, 13)

Worksheets("CBM+ Process') .Cells(7 +- i, 26) = Worksheets("CBM+

Process").Cells(7 + i, 24) + Worksheets("CBM+ Process").Cells(7 + i, 25)

Worksheets("CBM+ Process").Cells(7 + i, 37) = Worksheets("CBM+

Process").Cells(7 + i, 35) + Worksheets("CBM4- Process").Cells(7 + i, 36)

Worksheets("CBM+ Process") .Cells(7 + i, 48) = Worksheets("CBM+

Process").Cells(7 + i, 46) + Worksheets("CBM+ Process").Cells(7 + i, 47)

Worksheets("CBM+ Process").Cells(7 + i, 52) = Worksheets("CBM+

Process").Cells(7 + i, 37) + Worksheets("CBM+ Process").Cells(7 + i, 51)

Next i
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'This determines if there was an immediate Mission Abort

Sheets ("RVs").Select

For i = 1 To M

If Application.WorksheetFunction.Countlf(Range(Cells (4 + i, 6), Cells (4

+ i, 12)), 11= 1"1) >= 1 Then

Sheets("CBM-i Process') .Select

Worksheets("CBM+ Process").Cells(7 +- i, 16) =1

Sheets ("RVs") .Select

Else

Worksheets("CBM+ Process").Cells(7 + i, 16) =0

End If

Next i

'This produces the summed outputs for the CBM-4 Spreadsheet

Sheets("CBM+ Process") .Select

Worksheets("CBM÷ Process") .Cells Cl, 15)

Application.WorksheetFunction.Sum(Range(Cells(8, 12), Cells(7 + M, 12)))

Worksheets("CBM+ Process") .Cells(2, 15) =

Application.WorksheetFunction.Sum(Range(Cells (8, 13), Cells(7 + M, 13)))

Worksheets("CBM+ Process") .Cells(3, 15) =

Application.WorksheetFunction.Suin(Range(Cells(8, 14), Cells(7 + M, 14)))

Worksheets("CBM+ Process") .Cells(4, 15)=

Application.WorksheetFunction.Sum(Range(Cells(8, 24), Cells(7 + M, 24)))

Worksheets("CBM4- Process") .Cells(5, 15)=

Application.WorksheetFunction.Sum(Range(Cells(8, 25), Cells(7 + M, 25)))

Worksheets("CBM+ Process") .Cells(6, 15) =

Application.WorksheetFunction.Sum(RangeCCells(8, 26), Cells(7 + M, 26)))

Worksheets("CBM+ Process") .Cells(1, 18)=

Application.WorksheetFunction.Sum(Range(Cells(8, 35), Cells(7 + M, 35)))

Worksheets("CBM+ Process") .Cells(2, 18) =

Application.WorksheetFunction.Sum(Range(Cells(8, 36), Cells(7 + M, 36)))

Worksheets("CBM+ Process") .Cells(3, 18)=

Application.WorksheetFunction.Sum(Range(Cells(8, 37), Cells(7 + M, 37)))

Worksheets("CBM+ Process") .Cells(4, 18) =

Application.WorksheetFunction.Sum(RangeCCells(8, 46), Cells(7 + M, 46)))
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Worksheets("CBM+ Process') .Cells(5, 18)

Application.WorksheetFunction.Suin(Range(Cells(8, 47), Cells(7 + M, 47)))

Worksheets("CBM+ Process") .Cells(6, 18) =

Application.WorksheetFunction.Sum(Range(Cells(8, 48), Cells(7 + M, 48)))

Worksheets("ICBM+ Process") .Cells(1, 21) =

Application.WorksheetFunction.Suxn(Range(Cells(8, 50), Cells(7 + M, 50)))

Worksheets("ICBM+ Process") .Cells(2, 21)

Application.WorksheetFunction.Sum(Range(Cells(8, 51), Cells(7 + M, 51)))

Worksheets("ICBM+ Process") .Cells(3, 21) =

Application.WorksheetFunction.Sum(Range(Cells(8, 52), Cells(7 + M, 52)))

'This transposes data onto Data Worksheet

Sheets("'Legacy Process") .Select

Range(Cells(1, 15), Cells(6, 15)).Select

Selection. Copy

Sheets ("Data") .Select

RangeCCells(24 + v, 1), Cells(24 + v, 6)).Select

Selection. PasteSpecial Paste: =xlPasteAll, Operation: =xlNone, SkipBlanks: =

False, Transpose :=True

Sheets("'Legacy Process") .Select

Range(Cells(l, 18), Cells(6, 18)).Select

Selection.Copy

Sheets ("Data") .Select

Range(Cells(24 + v, 7), Cells(24 + v, 12)).Select

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=_

False, Transpose: =True

'This transposes data onto Data Worksheet

Sheets("CBM+ Process") .Select

Range(Cells(1, 15), Cells(6, l5)).Select

Selection. Copy

Sheets ("Data") .Select

Range(Cells(24 + v, 22), Cells(24 + v, 27)).Select

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=_

False, Transpose :=True

Sheets("CBM+ Process") .Select
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Range(Cells(l, 18), Cells(6, 18)).Select

Selection. Copy

Sheets ("Data') .Select

Range(Cells(24 + v, 28), Cells(24 + v, 33)).Select

Selection. PasteSpecial Paste: =xlPasteAll, Operation: =xlNone, SkipBlanks: =

False, Transpose :=True

Sheets("CBM+ Process") .Select

Range(Cells~l, 21), Cells(3, 21)).Select

Selection. Copy

Sheets ("Data") .Select

Range(Cells(24 + v, 34), Cells(24 + v, 36)).Select

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=_

False, Transpose: =True

Next v

'This determines means and CIs

Sheets ("Data") .Select

Worksheets("'Data"l).Cells(2, 3)=

Application.WorksheetFunction.Average(Range(Cells(25, 1), Cells(24 + v, 1)))

Worksheets("'Datal) .Cells(3, 3) =

Application.WorksheetFunction.Average(Range(Cells(25, 2), Cells(24 + v, 2)))

Worksheets("'Datal) .Cells(4, 3) =

Application.WorksheetFunction.Average(Range(Cells(25, 3), Cells(24 +i v, 3)))

Worksheets("'Data"l).Cells(5, 3) =

Application.WorksheetFunction.Average(Range(Cells(25, 4), Cells(24 + v, 4)))

Worksheets("Data") .Cells(6, 3) =

Application.WorksheetFunction.Average(Range(CellsC25, 5), Cells(24 + v, 5)))

Worksheets("'Data"l).Cells(7, 3) =

Application.WorksheetFunction.Average(Range(Cells(25, 6), Cells(24 + v, 6)))

Worksheets("'Data").CellsC8, 3)

Application.WorksheetFunction.Average(Range(Cells(25, 7), Cells(24 + v, 7)))

Worksheets("'Data"l).Cells(9, 3)=

Application.WorksheetFunction.Average(Range(Cells(25, 8), Cells(24 + v, 8)))

Worksheets("Datal) .Cells(lO, 3) =

Application.WorksheetFunction.Average(Range(Cells(25, 9), Cells(24 + v, 9)))
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Worksheets(I"Data") .Cells(11, 3)=

Application.WorksheetFunction.Average(Range(Cells(25, 10), Cells(24 + v,

10)))

Worksheets(I"Datal) .Cells(12, 3)=

Application.WorksheetFunction.Average(Range(Cells(25, 11), Cells(24 + v,

11)))

Worksheets("'Data") .Cells(13, 3)=

Application.WorksheetFunction.Average(Range(Cells(25, 12), Cells(24 + v,

12)))

Worksheets("'Data") .Cells(2, 11)=

Application.WorksheetFunction.Average(Range(Cells(25, 22), Cells(24 + v,

22)))

Worksheets(I'Datal) .Cells(3, 11)=

Application.WorksheetFunction.Average(Range(Cells(25, 23), Cells(24 + v,

23)))

Worksheets(I"Data") .Cells(4, 11)=

Application.WorksheetFunction.Average(Range(Cells(25, 24), Cells(24 + v,

24)))

Worksheets(I'Datal) .Cells(5, 11)

Application.WorksheetFunction.Average (Range (Cells (25, 25), Cells (24 + v,

25) ))
Worksheets(I"Data") .Cells(6, 11)=

Application.WorksheetFunction.Average(Range(Cells(25, 26), Cells(24 + v,

26) ))
Worksheets(I'Data") .Cells(7, 11)=

Application.WorksheetFunction.Average(Range(Cells(25, 27), Cells(24 + v,

27)))

Worksheets(IData') .Cells(8, 11)

Application.WorksheetFunction.Average(Range(Cells(25, 28), Cells(24 + v,

28)))

Worksheets(I'Data") .Cells(9, 11)=

Application.WorksheetFunction.Average(Range(Cells(25, 29), Cells(24 + v,

29)))

Worksheets(I'Datal) .Cells(10, 11)=

Application.WorksheetFunction.Average(Range(Cells(25, 30), Cells(24 + v,

30)))
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Worksheets("Data') .Cells(11, 11)

Application.WorksheetFunction.AverageCRange(Cells(25, 31), Cells(24 + v,

31) ))

Warksheets(I'Datal) .Cells(12, 11)

Application.WorksheetFunction.Average(Range(Cells(25, 32), Cells(24 + v,

32)))

Worksheets("'Datal) .Cells(13, 11)

Application.WorksheetFunction.Average(Range(Cells(25, 33), Cells(24 + v,

33)))

Worksheets(I"Datal) .Cells(14, 11)

Application.WorksheetFunction.AverageCRange(Cells(25, 34), Cells(24 + v,

34)))

Worksheets(I'Data") .Cells(15, 11)=

Application.WorksheetFunction.Average(Range(Cells(25, 35), Cells(24 + v,

35)))

Worksheets(I"Datal) .Cells(16, 11)

Application.WorksheetFunction.Average(Range(Cells(25, 36), Cells(24 + v,

36)))

If Worksheets(I"Datal").Cells(2, 3) > 0 Then

Worksheets ("Data") .Cells(2, 5) =

Application.WorksheetFunction.StDev(Range(Cells(25, 1), Cells(24 + v, 1)))

Else: Worksheets("Data").Cells(2, 5) = 0

End If

if Worksheets(I'Data"l).Cells(3, 3) > 0 Then

Worksheets("Data") .CellsC3, 5) =

Application.WorksheetFunction.StDev(Range(Cells(25, 2), Cells(24 + v, 2)))

Else: Worksheets("'Data"l).Cells(3, 5) =0

End If

If Worksheets("Data").Cells(4, 3) > 0 Then

Worksheets("'Data") .Cells(4, 5) =

Application.WorksheetFunction.StDev(Range(Cells(25, 3), Cells(24 + v, 3)))

Else: Worksheets("Data").Cells(4, 5) = 0

End If
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If Worksheets("'Data'l).Cells(5, 3) > 0 Then

Worksheets("Datan) .Cells(5, 5)=

Application.WorksheetFunctiofl.StDev(Raflge(Cells(25, 4), Cells(24 + v, 4)))

Else: Worksheets("'Data").Cells(5, 5) = 0

End. If

If Worksheets(I'Data").Cells(6, 3) > 0 Then

Worksheets("Datal) .Cells(6, 5)

Application.WorksheetFunction.StDev(Range(CellsC25, 5), Cells(24 + v, 5)))

Else: Worksheets("'Data").Cells(6, 5) = 0

End If

If Worksheets(I'Data").Cells(7, 3) > 0 Then

Worksheets("Datal) .Cells(7, 5)=

Application.WorksheetFunction.StDev(Range(Cells(25, 6), Cells(24 + v, 6)))

Else: Worksheets(I'Data").Cells(7, 5) = 0

End If

If Worksheets(I'Data").Cells(8, 3) > 0 Then

Worksheets("Datal) .Cells (8, 5) =

Application.WorksheetFunction.StDev(Range(Cells(25, 7), Cells(24 + v, 7)))

Else: Worksheets(I'Data').Cells(8, 5) = 0

End If

If Worksheets("Datal").Cells(9, 3) > 0 Then

Worksheets ("Data") .Cells(9, 5) =

Application.WorksheetFunction.StDev(Range(Cells(25, 8), Cells (24 + v, 8)))

Else: Worksheets('Data").Cells(9, 5) = 0

End If

If Worksheets(I'Data'1.Cells(lO, 3) > 0 Then

Worksheets('Datal) .Cells(l0, 5)=

Application.WorksheetFunction.StDev(Range(Cells(25, 9), Cells(24 + v, 9)))

Else: Worksheets("Data").Cells(l0, 5) = 0

End If

If Worksheets("'Data").Cells(ll, 3) > 0 Then
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Worksheets(I'Data") .Cells(11, 5)

Application.WorksheetFunction.StDev(RangeCCells(25, 10), Cells(24 + v, 10)))

Else: Worksheets(I"Data").Cells(11, 5) = 0

End If

If Worksheets("'Data").Cells(12, 3) > 0 Then

Worksheets("'Data") .Cells(12, 5)=

Application.WorksheetFunction.StDev(RangeCCells(25, 11), Cells(24 + v, 11)))

Else: Worksheets(I'Data").Cells(12, 5) = 0

End If

If Worksheets(I'Data").Cells(13, 3) > 0 Then

Worksheets('Data") .Cells(13, 5)=

Application.WorksheetFunction.StDev(Range(Cells(25, 12), Cells(24 + v, 12)))

Else: Worksheets(I'Datal) .Cells(13, 5) = 0

End If

If Worksheets(I'Data").Cells(2, 11) > 0 Then

Worksheets("'Data') .Cells(2, 13)

Application.WorksheetFunction.StDev(Range (Cells (25, 22), Cells(24 + v, 22)))

Else: Worksheets(I"Data").Cells(2, 13) = 0

End If

If Worksheets(I'Datall).Cells(3, 11) > 0 Then

Worksheets(I"Data") .Cells(3, 13)

Application.WorksheetFunction.StDev(Range(Cells(25, 23), Cells(24 + v, 23)))

Else: Worksheets(I'Datall).Cells(3, 13) = 0

End If

If Worksheets(I"Data').Cells(4, 11) > 0 Then

Worksheets(I'Data") .Cells(4, 13)

Application.WorksheetFunction.StDev(Range(Cells(25, 24);' Cells(24 + v, 24)))

Else: Worksheets(IDatall).Cells(4, 13) = 0

End If

If Worksheets("Data').Cells(5, 11) > 0 Then
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Worksheets("Data") .Cells(5, 13) =

Application.WorksheetFunction.StDev(Raflge(CellS(25, 25), Cells(24 + v, 25)))

Else: Worksheets&'Data").CellsC5, 13) = 0

End If

If Worksheets("Data").Cells(6, 11) > 0 Then

Worksheets("Data) .Cells(6, 13) =

Application.WorksheetFunctiOfl.StDeVCRaflge(CellS(25, 26), Cells(24 + v, 26)))

Else: Worksheets("Data").Cells(6, 13) = 0

End If

If Worksheets("Data'1.Cells(7, 11) > 0 Then

Worksheets("Data") .Cells(7, 13) =

Application.WorksheetFunction.StDev(Range (Cells (25, 27), Cells(24 + v, 27)))

Else: Worksheets(Data').Cells(7, 13) = 0

End If

If Worksheets('Data�).Cel1s(8, 11) > 0 Then

Worksheets("Data') .Cells(8, 13) =

Application.WorksheetFunction.StDeV(Range(Cel1S(25, 28), Cells(24 + v, 28)))

Else: Worksheets("Data").Cells(8, 13) = 0

End If

If Worksheets("Data').Cells(9, 11) > 0 Then

Worksheets("Data") .Cells(9, 13) =

Application.WorksheetFunction.StDeVCRange(Cell5(25, 29), Cells(24 + v, 29)))

Else: Worksheets('Data'1.Cells(9, 13) = 0

End If

If Worksheets("Data'1.Cells(lO, 11) > 0 Then

Worksheets ("Data') .Cells(10, 13) =

Application.WorksheetFunction.StDev(Range(Cell5(25, 30), Cells(24 + v, 30)))

Else: Worksheets("Data').Cells(l0, 13) = 0

End If

If Worksheets("Data").Cells(11, 11) > 0 Then

Worksheets("Data') .Cells(1l, 13) =

Application.WorksheetFunction.StDev(Range(Cells(25, 31), Cells(24 + v, 31)))
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Else: Worksheets(I'Data').Cells(ll, 13) =0

End If

If Worksheets(I"Datall).Cells(12, 11) > 0 Then

Worksheets("'Data") .Cells(12, 13)

Application.WorksheetFunction.StDev(Raflge(Cells(25, 32), Cells(24 + v, 32)))

Else: Worksheets(I"Data').Cells(12, 13) = 0

End If

If Worksheets("Data').Cells(13, 11) > 0 Then

Worksheets("Datal) .Cells(l3, 13) =

Application.WorksheetFunction.StDev(Range(Cells(25, 33), Cells(24 + v, 33)))

Else: Worksheets("Data").Cells(13, 13) = 0

End If

If Worksheets("'Data").Cells(14, 11) > 0 Then

Worksheets(I'Datal) .Cells(14, 13) =

Application.WorksheetFunction.StDev(Range(Cells(25, 34), Cells(24 + v, 34)))

Else: Worksheets(I"Data").Cells(14, 13) = 0

End If

If Worksheets(I'Data").Cells(15, 11) > 0 Then

Worksheets(I'Datal) .Cells(15, 13) =

Application.WorksheetFunction.StDev(Range(Cells(25, 35), Cells(24 + v, 35)))

Else: Worksheets("Data').Cells(15, 13) =0

End If

If Worksheets("Data").Cells(16, 11) > 0 Then

Worksheets("'Datal) .Cells(16, 13) =

Application.WorksheetFunction.StDev(Range (Cells (25, 36), Cells(24 + v, 36)))

Else: Worksheets(I"Data').Cells(16, 13) = 0

End If

If Worksheets(I'Datall).Cells(2,' 5) > 0 Then

Worksheets("'Data") .Cells (2, 7)=

Application.WorksheetFunction.Max(Worksheets ("Datal) .Cells (2, 3)-

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Datal) .Cells (2,

5), (v - 1)), 0)
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Worksheets("'Datal) .Cells(2, 8) = Worksheets("Data") .Cells(2, 3) +

Application.WorksheetFunctiofl.Coffideflce (0.05, Worksheets ('Datal) .Cells (2,

5), v - 1)

Else

Worksheets("'Data").Cells(2, 7) = 0

Worksheets(I"Data"l).Cells(2, 8) = 0

End If

If Worksheets(I"Data").Cells(3, 5) > 0 Then

Worksheets("'Datal) .Cells(3, 7)

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (3, 3)-

Application.WorksheetFunctiofl.Coffideflce(0 .05, Worksheets ("Data"l).Cells (3,

5), (v - 1)), 0)

Worksheets(I"Data").Cells(3, 8) = Worksheets("Data") .Cells(3, 3) +

Application.WorksheetFuflctiofl.Coffideflce(0.05, Worksheets ("Data"l).Cells (3,

5), v - 1)

Else

Worksheets(I"Data").Cells(3, 7) = 0

Worksheets("'Data").Cells(3, 8) = 0

End If

If Worksheets("Data").Cells(4, 5) > 0 Then

Worksheets("Data") .Cells(4, 7) =

Application.WorksheetFunction.Max(Worksheets ("Data") .Cells (4, 3)-

Application.WorksheetFunction.Confideflce(0 .05, Worksheets ("Data"l).Cells (4,

5), (v - 1)), 0)

Worksheets("'Data") .Cells(4, 8) = Worksheets("Data"l).Cells(4, 3) +

Application.WorksheetFunction.Confideflce(0.05, Worksheets ("Data"l).Cells (4,

5), v - 1)

Else

Worksheets("'Data").Cells(4, 7) = 0

Worksheets("Data").Cells(4, 8) = 0

End If

If Worksheets(I"Data"l).Cells(5, 5) > 0 Then

Worksheets(I'Datal) .Cells(5, 7)=

Application.WorksheetFunction.Max(Worksheets ('Data") .Cells (5, 3)-
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Application.WorksheetFuflctiofl.Coffidelce (0.05, Worksheets (Data") .Cells (5,

5), (v - 1)), 0)

Worksheets(I"Data") .Cells(5, 8) = Worksheets("Datal) .Cells(5, 3) +

Application.WorksheetFuflctiofl.Coffideflce(0.05, Worksheets (IDatal) .Cells (5,

5), v - 1)

Else

Worksheets(I'Data").Cells(5, 7) = 0

Worksheets("Data").Cells(5, 8) = 0

End If

If Worksheets("'Data").Cells(6, 5) > 0 Then

Worksheets("Datal) .Cells(6, 7) =

Application.WorksheetFunctiofl.Max(Worksheets ("Data"l).Cells (6, 3)-

Application.WorksheetFunction.Confideflce(0 .05, Worksheets ("Data"l).Cells (6,

5), (v - 1)), 0)

Worksheets("'Data"l).Cells(6, 8) = Worksheets(I'Datall).Cells(6, 3) +

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (6,

5), v - 1)

Else

Worksheets("Data").Cells(6, 7) = 0

Worksheets("'Datal) .Cells(6, 8) = 0

End If

If Worksheets("'Data").Cells(7, 5) > 0 Then

Worksheets("'Datal) .Cells(7, 7) =

Application.WorksheetFunction.Max(Worksheets ("Data") .Cells (7, 3)-

Application.WorksheetFunctiori.Coflfidence(0.05, Worksheets ("Data") .Cells (7,

5), (v - 1)), 0)

Worksheets(I"Data") .Cells(7, 8) = Worksheets("Datal) .Cells(7, 3) +

Application.WorksheetFunction.Coflfideflce(0 .05, Worksheets ("Data"l).Cells (7,

5), v - 1)

Else

Worksheets("Data").Cells(7, 7) = 0

Worksheets("Data").Cells(7, 8) = 0

End If

If Worksheets("'Data").Cells(8, 5) > 0 Then
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Worksheets("Data") .Cells(8, 7)

Application.WorksheetFunction.Max(Worksheets ("Data") .Cells (8, 3)-

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Datal) .Cells (8,

5), (v - 1)), 0)

Worksheets("Data") .Cells(8, 8) = Worksheets("Data').Cells(8, 3) +

Application.WorksheetFunction.Confidence(O .05, Worksheets ("Data"l).Cells (8,

5), v - 1)

Else

Worksheets("'Data"l).Cells(8, 7) = 0

Worksheets("Data"l).Cells(8, 8) = 0

End If

If Worksheets("Data"l).Cells(9, 5) > 0 Then

Worksheets("Data") .Cells(9, 7) =

Application.WorksheetFunction.Max(Worksheets ("Data") .Cells (9, 3)-

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (9,

5), (v - 1)), 0)

Worksheets("'Data"l).Cells(9, 8) = Worksheets("'Data") .Cells(9, 3) +

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (9,

5), v - 1)

Else

Worksheets("Data"l).Cells(9, 7) = 0

Worksheets("'Data").Cells(9, 8) = 0

End If

If Worksheets("Data").Cells(lO, 5) > 0 Then

Worksheets("Data") .Cells(10, 7)=

Application.WorksheetFunction.Max(Worksheets ("Data") .Cells (10, 3)-

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (10,

5), (v - 1)), 0)

Worksheets("Data") .Cells(1O, 8) = Worksheets("Data") .Cells(10, 3) +

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (10,

5), v - 1)

Else

Worksheets("Data") .Cells(l0, 7) = 0

Worksheets("'Data").Cells(10, 8) = 0

End If
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If Worksheets("Data"l).Cells(11, 5) > 0 Then

Worksheets("'Data") .Cells(ll, 7) =

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (11, 3)-

Application.WorksheetFunction.Confidence(O .05, Worksheets ('Datal) .Cells (11,

5), (v - 1)), 0)

Worksheets("'Data") .Cells(11, 8) = Worksheets("'Datal) .Cells(ll, 3) +

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (11,

5), v - 1)

Else

Worksheets(I"Datall).Cells(ll, 7) = 0

Worksheets("'Data").Cells(ll, 8) = 0

End If

If Worksheets(I'Data").Cells(l2, 5) > 0 Then

Worksheets("Data") .Cells(12, 7) =

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (12, 3)

Application.WorksheetFunction.Confidence (0.05, Worksheets ("Data") .Cells (12,

5), (v -1) 0)

Worksheets("'Data") .Cells(12, 8) = Worksheets("'Datal) .Cells(12, 3) +

Application.WorksheetFunction.Confidence (0.05, Worksheets ("Data") .Cells (12,

5), v - 1)

Else

Worksheets("'Data"l).Cells(12, 7) = 0

Worksheets("'Data").Cells(12, 8) = 0

End If

If Worksheets("'Data").Cells(13, 5) > 0 Then

Worksheets("'Datal) .Cells(13, 7)

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (13, 3)-

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data") .Cells (13,

5), (v - 1)), 0)

Worksheets("Data') .Cells(13, 8) = Worksheets("'Datal) .Cells(13, 3) +

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (13,

5), v - 1)

I Else

Worksheets("'Data").Cells(13, 7) = 0

Worksheets("'Data").Cells(13, 8) = 0



End I f

If Worksheets("'Data").Cells(2, 13) > 0 Then

Worksheets("Data") .Cells(2, 15) =

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (2, 11)-

Application.WorksheetFunction.Confidence(O.05, Worksheets ('Data") .Cells (2,

13), (v - 1)), 0)

Worksheets("Data") .Cells(2, 16) =Worksheets(I"Datal) .Cells(2, 11) +

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Data") .Cells (2,

13), v - 1)

Else

Worksheets("Datall).Cells(2, 15) = 0

Worksheets(I'Datall).Cells(2, 16) = 0

End If

If Worksheets("'Data"l).Cells(3, 13) > 0 Then

Worksheets("'Data") .Cells(3, 15)=

A pplication.WorksheetFunction.Max(Worksheets ("Data"l).Cells (3, 11)-

Application.WorksheetFunction.Confidence(0. 05, Worksheets ("Data") .Cells (3,

Worksheets("'Data") .Cells(3, 16) = Worksheets(I'Datal) .Cells(3, 11) +

Application.WorksheetFunction.Confidence(O .05, Worksheets ("Data") .Cells (3,

13), v - 1)

Else

Worksheets("Data").Cells(3, 15) = 0

Worksheets("'Data"l).Cells(3, 16) = 0

End If

If Worksheets("'Data").Cells(4, 13) > 0 Then

Worksheets("'Data") .Cells(4, 15)

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (4, 11)-

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Data") .Cells (4,

13), (v - 1)), 0)

Worksheets("'Data") .Cells(4, 16) = Worksheets("'Data") .Cells(4, 11) +t

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Data"l).Cells (4,

13), v - 1)

Else

Worksheets("Data").Cells(4, 15) = 0

112



Worksheets("'Data").Cells(4, 16) = 0

End If

If Worksheetb("'Data"l).Cells(5, 13) > 0 Then

Worksheets("'Datal) .Cells(5, 15) =

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (5, 11)-

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Data"l).Cells (5,

13), (v - 1)), 0)

Worksheets("'Datal) .Cells(5, 16) = Worksheets("Datal) .Cells(5, 11) +

Application.WorksheetFunction.Confidence(O .05, Worksheets ("Data"l).Cells (5,

13), v - 1)

Else

Worksheets(I"Data").Cells(5, 15) = 0

Worksheets(I"Data").Cells(5, 16) = 0

End If

if Worksheets("'Data"l).Cells(6, 13) > 0 Then

Worksheets("'Datal) .Cells(6, 15) =

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (6, 11)-

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Data"l).Cells (6,

Worksheets("Data") .Cells(6, 16).= Worksheets("Data") .Cells(6, 11) +

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (6,

13), v - 1)

Else

Worksheets("'Data").Cells(6, 15) = 0

Worksheets("'Data") .Cells(6, 16) = 0

End If

If Worksheets("Data"l).Cells(7, 13) > 0 Then

Worksheets("Datal) .Cells(7, 15)

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (7, 11)-

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (7,

13), (v - 1)), 0)

Worksheets("Data"l).Cells(7, 16) = Worksheets("Data"l).Cells(7, 11) +

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (7,

13), v - 1)

Else

Worksheets("'Data").Cells(7, 15) = 0
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Worksheets("Data").Cells(7, 16) = 0

End If

If Worksheets("'Data").Cells(8, 13) > 0 Then

Worksheets("'Data") .Cells(8, 15)

Application.WorksheetFunction.Max(Worksheets ('Data') .Cells (8, 11)-

Application.WorksheetFunction.Confidence (0.05, Worksheets ("Data") .Cells (8,

13), (v - 1)), 0)

Worksheets("Data") .Cells(8, 16) = Worksheets("'Datal) .Cells(8, 11) +

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Data"l).Cells (8,

13), v - 1)

Else

Worksheets("Data").Cells(8, 15) = 0

Worksheets("Data").Cells(8, 16) = 0

End If

If Worksheets("Datall).Cells(9, 13) > 0 Then

Worksheets("'Datal) .Cells(9, 15) =

Application.WorksheetFunction.Max(Worksheets ("Datal) .Cells (9, 11)-

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Data") .Cells (9,

13), (v - 1)), 0)

Worksheets("'Data") .Cells(9, 16) = Worksheets(I"Data") .Cells(9, 11) +

Application.WorksheetFunction.Confidence (0.05, Worksheets ("Data") .Cells (9,

13), v - 1)

Else

Worksheets("Data").Cells(9, 15) = 0

Worksheets("'Data").Cells(9, 16) = 0

End If

If Worksheets("'Data").Cells(10, 13) > 0 Then

Worksheets("'Data") .Cells(10, 15) =

Application.WorksheetFunction.Max(Worksheets ("Data") .Cells (10, 11)-

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Data") .Cells (10,

13), (v -1)), 0)

Worksheets(I"Data") .Cells(l0, 16) = Worksheets("Datal) .Cells(10, 11) +

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data") .Cells (10,

13), v - 1)

Else
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Worksheets(I'Datal) .Cells(10, 15) = 0

Worksheets("Data") .Cells(10, 16) = 0

End If

If Worksheets(I"Data").Cells(11, 13) > 0 Then

Worksheets("'Data") .Cells(11, 15)=

Application.WorksheetFunction.Max(Worksheets ( "Datal) .Cells (11, 11)-

Application.WorksheetFunction.Confidence(O.O5, Worksheets (IData").Ce11s (11,

13), (v - 1)), 0)

Wo~ksheets("Data") .Cells(11, 16) = Worksheets("'Data") .Cells(11, 11) +

Application.WorksheetFunction.Confidence(0 .05, Worksheets (IDatal) .Cells (11,

13), v - 1)

Else

Worksheets("Datal) .Cells(11, 15) = 0

Worksheets("Data") .Cells(11, 16) = 0

End If

If Worksheets("Datal) .Cells(12, 13) > 0 Then

Worksheets("'Data") .Cells(12, 15) =

Application.WorksheetFunction.Max(Worksheets (Data"l).Cells (12, 11)-

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Datal) .Cells (12,

13), (v - 1)), 0)

Worksheets(srData") .Cells(12, 16) = Worksheets("'Data") .Cells(12, 11) +

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (12,

13), v - 1)

Else

Worksheets("'Datal) .Cells(12, 15) = 0

Worksheets(I'Data").Cells(12, 16) = 0

End If

If Worksheets("Data").Cells(13, 13) > 0 Then

Worksheets(I"Data") .Cells(13, 15)

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (13, 11)-

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data") .Cells (13,

13), (v - 1)), 0)

Worksheets(I"Data") .Cells(13, 16) = Worksheets("'Data") .Cells(13, 11) +

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Data"l).Cells (13,

13), v - 1)
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Else

Worksheets("Data") .Cells(13, 15) = 0

Worksheets("Data").Cells(13, 16) = 0

End If

If Worksheets(I'Data").Cells(14, 13) > 0 Then

Worksheets("'Data") .Cells(14, 15) =

Application.WorksheetFunction.Max(Worksheets ("Data'l).Cells (14, 11)

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (14,

13), (v - 1)), 0)

Worksheets("Data") .Cells(14, 16) = Worksheets("'Data") .Cells(14, 11) +

Application.WorksheetFunction.Confidence(0.05, Worksheets ("Data"l).Cells (14,

13), v - 1)

Else

Worksheets("Data") .Cells(14, 15) = 0

Worksheets("Data").Cells(14, 16) = 0

End If

If Worksheets("Data"l).Cells(15, 13) > 0 Then

Worksheets("'Data") .Cells(15, 15)

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (15, 11)-

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (15,

13), (v - 1)), 0)

Worksheets("'Data") .Cells(15, 16) = Worksheets(I'Data") .Cells(15, 11) +

Application.WorksheetFunction.Confidence (0.05, Worksheets ("Data"l).Cells (15,

13), v - 1)

Else

Worksheets("Data").Cells(15, 15) = 0

Worksheets("Data").Cells(15, 16) = 0

End If

If Worksheets("'Data").Cells(16, 13) > 0 Then

Worksheets("'Data") .Cells(16, 15) =

Application.WorksheetFunction.Max(Worksheets ("Data"l).Cells (16, 11)-

Application.WorksheetFunction.Confidence(0 .05, Worksheets ("Data"l).Cells (16,
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Worksheets("Data") .Cells(16, 16) = Worksheets("Datal) .Cells(16, 11) +

Application.WorksheetFunction.Confidence(O .05, Worksheets ('Data'l).Cells (16,

13), v - 1)

Else

Worksheets(I"Data') .Cells(16, 15) = 0

Worksheets(I'Datall).Cells(16, 16) = 0

End Sub
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EXHIBIT 2 APPENDIX E STATISTICAL RESULTS FOR VARYING Pc

All table listed below were computed using 1,000 replications of the simulation.

Table Al displays statistical summaries of the output from simulation of the number of mission aborts

occurring as a result of 1,250 missions (5,000 flight hours) while varying Pc. The parameters of the beta

distribution are as per Table 11; the parameters of the Weibull distribution are aw=l.5 and P3w=l 1.08. This is

data for Figure 6.

Table A l

R- L___ LEACYý PROOS cýBM+ PROCE'SS
0.10 jAborts Mean: 4.70 SD: 2.14 95% CI: 4.57 4.83 YAborts Mean: 5.25 SD: 2.27 95% Ci: 5.11 5.39
0.20 jAborts Mean: 4.53 SD: 2.11 95% CI: 4.40 4.66 jAborts Mean: 2.95 SD: 1.64 95% C: 2.85 3.06
0.30 jAborts Mean: 4.57 SD: 2.07 95% CI: 4.44 4.70 jAborts Mean: 1.91 SD: 1.40 95% C7 1.83 2.00
0.40 jAborts Mean: 4.49 SD: 2.09 95% CI: 4.36 4.62 jAborts Mean: 1.32 SD: 1.11 95% CL 1.25 1.39
0.50 jAborts Mean: 4.45 SD: 2.15 95% CI: 4.32 4.58 jAborts Mean: 0.93 SD: 0.97 95% C: 0.87 0.99
0.60 jAborts Mean: 4.55 SD: 2.13 95% CI: 4.42 4.68 jAborts Mean: 0.73 SD: 0.87 95% CL 0.67 0.78
0.70 jAborts Mean: 4.56 SD: 2.06 95% CI: 4.44 4.69 }Aborts Mean: 0.53 SD: 0.74 95% C: 0.48 0.57
0.80 1Aborts Mean: 4.52 SD: 2.08 95% CI: 4.39 4.65 jAborts Mean: 0.46 SD: 0.68 95% C: 0.42 0.50
0.90 YAborts Mean: 4.51 SD: 2.08 95% CI: 4.38 4.64 jAborts Mean: 0.36 SD: 0.61 95% C: 0.32 0.40
0.99 1Aborts Mean: 4.53 SD: 2.14 95% CI: 4.40 4.66 jAborts Mean: 0.32 SD: 0.58 95% CL: 0.28 0.35

Table A2 displays the statistical summaries of the output from simulation of the repair times occurring as a

result of 1,250 missions (5,000 flight hours) while varying Pc. The parameters of the beta distribution are as

per Table 11; the parameters of the Weibull distribution are ctw=1.5 and P3w=l 1.08. This is data for Figure 7.

Table A2

PR ____ LEG;ACY' FIR OESB[c + PROCE'SS
0.10 YR Mean: 76.13 SD: 27.36 95% CI: 74.44 77.83 YR Mean: 80.75 SD: 29.17 95% CL 78.94 82.55
0.20 JR Mean: 75.06 SD: 26.71 95% CI: 73.40 76.71 JR Mean: 66.58 SD: 23.92 95% CL 65.10 68.07
0.30 JR Mean: 75.94 SD: 27.24 95% CI: 74.25 77.63 JR Mean: 59.27 SD: 23.04 95% CL 57.84 60.70
0.40 JR Mean: 74.65 SD: 27.13 95% CI: 72.97 76.33 JR Mean: 54.83 SD: 20.85 95% CL 53.54 56.13
0.50 JR Mean: 75.29 SD: 26.56 95% CI: 73.65 76.94 JR Mean: 51.40 SD: 19.09 95% C: 50.22 52.58
0.60 JR Mean: 75.02 SD: 27.49 95% CI: 73.32 76.73 JR Mean: 46.68 SD: 18.23 95% CL 45.55 47.81
0.70 r JR Mean: 76.24 SD: 26.60 95% CI: 74.59 77.89 1 IR Mean: 44.07 SD: 17.29 95% CL 42.99 45.14
0.80 TIR Mean: 75.84 SD: 28.04 95% CI: 74.10 77.58 TIR Mean: 40.75 SD: 16.05 95% CL: 39.75 41.74

0.90 JR Mean: 74.73 SD: 27.10 95% CI: 73.05 76.41 TR Mean: 37.64 SD: 15.80 95% CL 36.66 38.62
0.99 YR Mean: 75.38 SD: 27.58 95% CI: 73.67 77.09 IR Mean: 34.83 SD: 14.53 95% C: 33.93 35.73

Table A3 displays the statistical summaries of the simulation output for the number of diagnostic symptoms

recognized, number of mission aborts, repair time as a result of 1,250 missions (5,000 flight hours) while

varying the variance of the Weibull distribution determining MA for the case with mean Pc=0.99. The beta

distribution has parameters cxB= 2 5 and P3B=. 2 5 . The parameters of the Weibull distribution when xw=0.5 then

P3w=5, when ctw=l then P3w=10, and when ctw=l.5 then 3w=l 1.08. This is data for Figures 8, 9, and 10.
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Table A3

0.50 YDSs Mean 4.08 SD: 1.98 95% CI 3.96 4.20 YDSs Mean 7.26 SD 2.64 95% CI 7.10 7.42
0.50 YAborts Mean 7.35 SD: 2.76 95% CI 7.18 7.52 YAborts Mean: 4.17 SD 2.07 95% CI 4.04 4.30
0.50 YR Mean 70.13 SD: 26.62 95% CI 68.48 71.78 YR Mean: 42.64 SD 18.51 95% CI 41.49 43.79
1.00 YDSs Mean: 6.08 SD: 2.48 95% CI 5.92 6.23 YDSs Mean: 10.40 SD 3.28 95% CI 10.19 10.60
1.00 YAborts Mean 5.44 SD: 2.25 95% CI 5.30 5.58 YAborts Mean 1.12 SD 1.03 95% CI 1.05 1.18
1.00 YR Mean 75.86 SD: 27.82 95% CI 74.14 77.59 YR Mean: 36.54 SD 16.35 95% CI 35.53 37.56
1.50 2 DSs Mean 6.79 SD: 2.66 95% Ch 6.62 6.95 YDSs Mean: 11.03 SD 3.36 95% CI 10.82 11.24
1.50 IAborts Mean: 4.52 SD: 2.12 95% Ch 4.39 4.65 YAborts Mean 0.28 SD 0.51 95% C7 : 024 0.31
1.50 1 jR Mean: 748.1 SD: 27.39 95% CI 73.11 1 76.50 1 jR --Mean 3478 SD 14.80 95% C: 33.87 35.70

Tables A4 and A5 display the statistical summaries for the simulation output of the number of diagnostic

symptoms recognized, number of mission aborts, repair time as a result of 1,250 missions (5,000 flight hours)

while varying the variance of the Weibull distribution having mean 10 determining MA for the cases where

mean Pc=0.50 and mean Pc=0.20; the parameters of the beta distribution are dIB= 2 5 P3B=2 5 (when Pc=0.50) and

UtB= 2 5 P3B=100 (when Pc=0.20). This is data for Figures 8, 9, and 10.

Table A4 (Pc=0.50)

a LEGACY PROCESS CBM+ PROCESS
0.5 YDSs Mean: 4.19 SD: 2.02 95% CI: 4.06 4.31 YDSs Mean: 6.39 SD: 2.54 95% CI: 6.23 6.55
0.5 YAborts Mean: 7.32 SD: 2.70 95% CI: 7.15 7.49 YAborts Mean: 5.12 SD: 2.28 95% CI: 4.97 5.26
0.5 YR Mean: 70.71 SD: 26.44 95% CI: 69.07 72.34 YR Mean: 53.00 SD: 21.19 95% CI: 51.69 54.31
1 YDSs Mean: 5.99 SD: 2.44 95% CI: 5.83 6.14 YDSs Mean: 9.30 SD: 3.12 95% CI: 9.11 9.49
1 YAborts Mean: 5.28 SD: 2.34 95% CI: 5.13 5.42 YAborts Mean: 1.96 SD: 1.45 95% CI: 1.87 2.05
1 YR Mean: 74.59 SD: 28.77 95% CI: 72.80 76.37 YR Mean: 51.20 SD: 20.26 95% CI: 49.94 52.45

1.5 YDSs Mean: 6.72 SD: 2.50 95% CI: 6.57 6.87 YDSs Mean: 10.35 SD: 3.10 95% CI: 10.16 10.54
1.5 YAborts Mean: 4.62 SD: 2.10 95% CI: 4.49 4.75 YAborts Mean: 1.00 SD: 0.98 95% CI: 0.93 1.06
1.5 1 R Mean: 75.54 SD: 26.39 95% CI: 73.91 77.18 1 R Mean: 50.22 SD: 18.71 95% CI: 49.06 51.38

Table A5 (Pc=0.20)

a ___LEGACY PROCESS CBM+ PROCESS
0.5 YDSs Mean: 4.06 SD: 1.98 95% CI: 3.94 4.18 YDSs Mean: 4.88 SD: 2.27 95% CI: 4.74 5.02
0.5 TAborts Mean: 7.26 SD: 2.62 95% CI: 7.09 7.42 TAborts Mean: 6.44 SD: 2.45 95% CI: 6.29 6.59
0.5 IR Mean: 70.19 SD: 26.71 95% CI: 68.54 71.85 IR Mean: 63.61 SD: 24.94 95% CI: 62.06 65.15
1 YDSs Mean: 6.10 SD: 2.47 95% CI: 5.95 6.25 YDSs Mean: 7.56 SD: 2.72 95% CI: 7.39 7.72
1 YAborts Mean: 5.40 SD: 2.39 95% CI: 5.25 5.54 YAborts Mean: 3.94 SD: 2.09 95% CI: 3.81 4.07
1 IR Mean: 75.93 SD: 28.37 95% CI: 74.17 77.68 IR Mean: 68.00 SD: 25.51 95% CI: 66.42 69.58

1.5 YDSs Mean: 7.04 SD: 2.59 95% CI: 6.88 7.20 YDSs Mean: 8.67 SD: 2.95 95% CI: 8.49 8.85
1.5 YAborts Mean: 4.54 SD: 2.19 95% CI: 4.41 4.68 YAborts Mean: 2.91 SD: 1.72 95% CI: 2.80 3.01
1.5 1 R Mean: 75.81 SD: 27.79 95% CI: 74.08 77.53 1 R Mean: 68.02 SD: 25.21 95% CI: 66.45 69.58

Table A6 displays the statistical summaries of simulation output for the number of false positives and the

repair (inspection) times as a result of 1,250 missions (5,000 flight hours) while varying the false positive

arrival rate; the parameters of the beta distribution are GLB= 2 5 and P3B=. 2 5 ; the parameters of the Weibull

distribution are ctw=1.5 and P3w=l 1.08. This is an expanded version of Table 12.

Table A6
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False
Positive CBM+ PROCESS (NUMBER OF FALSE POSITIVE ARRIVALS)

Rate
0.9999 ZFP Mean: 1238.57 SD: 3.31 95% Cl: 1238.36 1238.78

0.90 -FP Mean: 1115.29 SD: 11.18 95% C1: 1114.59 1115.98
0.80 -FP Mean: 990.51 SD: 14.47 95% CI: 989.61 991.41
0.70 ZFP Mean: 866.70 SD: 16.58 95% Cl: 865.67 867.73
0.60 ZFP Mean: 743.41 SD: 17.13 95% CI: 742.34 744.47
0.50 ZFP Mean: 620.23 SID: 17.69 95% Cl: 619.14 621.33
0.40 ZFP Mean: 1495.29 1 SD:I 16.85 195% Cl: 1494.25 1496.34

0.30 ZFP Mean: 372.07 SD: 16.24 95% CI: 371.06 373.08
0.20 ZFP Mean: 247.05 SD: 14.09 95% CI: 246.18 247.92
0.10 ZFP Mean: 124.34 SD: 10.44 95% CI: 123.69 124.98

0,0001 YFP Mean: 0.14 SD: 0361 95% CI: 0211 0216

040tv M PRCS TimeAI Mean: 1490RR28 SD: E 854 95%S COITIV 148498 14955

Rate

0.9999 3 FP Time Mean: 3717.41 SD: 105.16 95% Cl: 3710.89 3723.93
0.90 ZFP Time Mean: 3343.55 SD: 106.54 95% CI: 3336.95 3350.15
0.80 ZFP Time Mean: 2969.66 SD: 104.41 95% CI: 2963.19 2976.13
0.70 ZFP Time Mean: 2598.47 SD: 104.49 95% CI: 2591.99 2604.94
0.60 ZFP Time Mean: 2228.17 SID: 98.01 95% Cl: 2222.10 2234.25

0.50 tFP Time Mean: 1861.03 SaD: 89.15 95% Cl: 1855.50 1866.55
0.40 TFP Time Mean: 1490.28 SD: 85.40 495% C: 1484.98 1495.57
0.30 ZFP Timel Mean] 1118.76 SID: 74.55 95% C1: 1114.14 1123.38

0.20 R FP Time Mean: 741.94 SD: 62.68 95% CI: 738.05 745.82
0.10 ZFP Time Mean: 371.62 SD: 47.00 95% Cl: 368.71 374.54

0.0001 ZFP Time Mean: 10.42 SD: 1.64 95% CI: 0.3281 0.52

Table A7 displays the statistical summaries of the output of simulations for the total repair time (total repair

time = diagnostic symptom repair time + false positive repair time) as a result of 1,250 missions (5,000 flight

hours) while varying the false positive arrival rate. The parameters of the beta distribution are 21=25 and

f!B=.25; the parameters of the Weibull distribution are afpý 1.5 and fia- 11.08. This is an expanded version of

Table 14.

Table A7

0.10 YR+YFP Time Mean: 406.13 SD: 48.87 95% CI: 403.11 409.16

0.09 ZR+ZFP Time Mean: 369.59 SD: 46.37 95% CI: 366.71 372.46

0.08 7R+YFP Time Mean: 330.84 SD: 42.89 95% Cl: 328.18 333.50
0.07 7R+7FP Time Mean: 291.50 SD: 42.19 95% Cl: 288.89 294.12
0.06 ZR+ZFP Time Mean: 257.54 SD: 38.12 95% Cl: 255.18 259.91
0.05 YR+YFP Time Mean: 221.93 SD: 37.29 95% CI: 219.61 224.24

0.04 YR+YFP Time Mean: 185.08 SD: 32.49 95% CI: 183.06 187.09
0.03 ZR+ZFP Time Mean: 146.10 SD: 30.02 95% CI: 144.24 147.96

10.02 YR+YFP Time Mean: 108.97 SD: 25.81 95% CI: 107.38 110.57
0.01 1 R+YFP Time Mean: 71.91 SD: 20.47 95% CI: 70.64 73.17

0.0001 1 R+ZFP Time Mean: 36.06 SD: 15.43 95% 7I 35.10 370

Table A8 displays the statistical summaries of simulation output for the time awaiting replacement components

as a result of 1,250 missions (5,000 flight hours) while varying POH when mean P, is 0.99 and the mean time

until the replacement component arrives is 3 days. The parameters of the beta distribution are aB= 2 5 and
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/JB=. 2 5 ; the parameters of the Weibull distribution are aw=l1.5 and fw=l 1.08. The time until a component

replacement arrives has an exponential distribution. This is data for Figure 12.

Table A8

Pon ANDLEGACY PROCESS CBM+ PROCESS
0.9999 YAS Mean: 0.00 SD: 0.09 95% CI: 0.00 0.01 YAS Mean: 0.00 SD: 0.00 95% CI 0.00 0.00
0.90 JAS Mean: 1.72 SD: 3.23 95% CI: 1.52 1.92 JAS Mean: 0.45 SD: 1.64 95% CI 0.35 0.55
0.80 JAS Mean: 3.57 SD: 4.77 95% CI: 3.28 3.87 JAS Mean: 0.87 SD: 2.27 95% CI 0.73 1.01
0.70 JAS Mean: 5.03 SD: 5.59 95% CI: 4.68 5.38 JAS Mean: 1.26 SD: 2.83 95% CI 1.08 1.44
0.60 JAS Mean: 7.05 SD: 6.76 95% CI: 6.63 7.47 JAS Mean: 1.83 SD: 3.27 95% CI 1.63 2.03
0.50 JAS Mean: 7.99 SD: 7.05 95% CI: 7.56 8.43 JAS Mean: 2.09 SD: 3.40 95% CI 1.88 2.30
0.40 1 AS Mean: 10.46 SD: 8.02 95% CI: 9.96 10.95 1 ]AS Mean: 3.01 SD: 4.19 95% CI: 2.75 3.27
0.30 JAS Mean: 11.75 SD: 8.58 95% CI: 11.22 12.28 JAS Mean: 3.15 SD: 4.37 95% C: 2.88 3.42
0.20 JAS Mean: 13.37 SD: 9.05 95% CI: 12.81 13.93 JAS Mean: 3.36 SD: 4.12 95% CH: 3.10 3.61
0.10 JAS Mean: 15.50 SD: 9.47 95% CI: 14.91 16.08 1 ]AS Mean: 4.23 SD: 5.65 95% CIL 3.88 4.58

0.0001 TAS Mean] 16.77 SDI 10.16 95% CI: 16.14 17.40 YAS Mean] 4.72 SD 5.57 95% CI: 4.37 5.06

Table A9 displays the statistical summaries of simulation output for the time awaiting replacement components

as a result of 1,250 missions (5,000 flight hours) while varying POH when mean P, is 0.50 and the mean time

until the replacement component arrives is 3 days. The parameters of the beta distribution are aB= 2 5 and

J6 B=2 5 ; the parameters of the Weibull distribution are ay=1.5 and fi6 w=l 1.08. The time until a replacement

component arrives has an exponential distribution. This is data for Figure 13.

Table A9

PON ANDLEGACY PROCESS CBM+ PROCESS
0.9999 YAS Mean: 0.00 SD: 0.01 95% CI: 0.00 0.00 YAS Mean: 0.00 SD: 0.00 95% CI 0.00 0.00
0.90 JAS Mean: 1.76 SD: 3.47 95% CI: 1.55 1.98 JAS Mean: 0.69 SD: 1.86 95% CI 0.58 0.81
0.80 JAS Mean: 3.41 SD: 4.53 95% CI: 3.13 3.69 JAS Mean: 1.38 SD: 2.80 95% CI 1.21 1.56
0.70 JAS Mean: 4.98 SD: 5.55 95% CI: 4.64 5.33 JAS Mean: 2.26 SD: 3.80 95% CI 2.02 2.49
0.60 JAS Mean: 6.88 SD: 6.32 95% CI: 6.48 7.27 JAS Mean: 2.70 SD: 3.86 95% CI 2.46 2.94
0.50 JAS Mean: 8.69 SD: 6.70 95% CI: 8.27 9.10 JAS Mean: 3.43 SD: 4.55 95% CI 3.15 3.71
0.40 1 AS Mean: 10.38 SD: 8.02 95% CI: 9.89 10.88 JAS Mean: 3.92 SD: 4.66 95% CI 3.64 4.21
0.30 JAS Mean: 11.73 SD: 8.35 95% CI: 11.21 12.25 JAS Mean: 5.11 SD: 5.68 95% CI: 4.76 5.46
0.20 JAS Mean: 13.44 SD: 9.00 95% CI: 12.88 14.00 JAS Mean: 5.50 SD: 5.67 95% CI 5.15 5.85
0.10 JAS Mean: 15.31 SD: 9.27 95% CI: 14.73 15.88 1 ]AS Mean: 6.30 SD: 6.12 95% CI 5.92 6.68

0.0001 JAS Mean] 17.16 SD: 10.06 95% CI: 16.53 17.78 1 ]AS Mean: 6.77 SD: 6.14 95% CI: 6.39 7.15

Table A 10 displays statistical summaries of simulation output for the time awaiting replacement components

as a result of 1,250 missions (5,000 flight hours) while varying POH when mean P, is 0.20 and the mean time

until the replacement component arrives is 3 days. The parameters of the beta distribution are aB=2 5 and

,GB=1 0 0 ; the parameters of the Weibull distribution are afp=1.5 and f/hal 1.08. The time until a replacement

component arrives has an exponential distribution. This is data for Figure 14.

Table A 10
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P -0 LEGACY PROCESS CBM+ PROCESS
0.9999 JAS Mean: 0.00 SD: 0.00 95% CI: 0.00 0.00 Y AS Mean: 0.00 SD: 0.00 95% CU. 0.00 0.00
0.90 JAS Mean: 1.69 SD: 3.10 95% CI: 1.50 1.88 JAS Mean: 1.32 SD: 2.91 95% CI 1.14 1.50
0.80 JAS Mean: 3.34 SD: 4.51 95% CI: 3.07 3.62 JAS Mean: 2.67 SD: 4.05 95% CI 2.42 2.92
0.70 JAS Mean: 5.06 SD: 5.17 95% CI: 4.74 5.38 JAS Mean: 3.81 SD: 4.92 95% CI 3.51 4.12

0.60 JAS Mean: 6.37 SD: 6.04 95% CI: 6.00 6.75 JAS Mean: 5.25 SD: 5.43 95% CI 4.91 5.58
0.50 JAS Mean: 8.78 SD: 7.08 95% CI: 8.34 9.22 JAS Mean: 5.92 SD: 5.74 95% CI 5.57 6.28
0.40 1 AS Mean: 10.14 SD: 8.04 95% CI: 9.64 10.64 JAS Mean: 8.03 SD: 7.25 95% CI 7.58 8.48
0.30 JAS Mean: 12.23 SD: 8.40 95% CI: 11.71 12.75 JAS Mean: 9.31 SD: 7.65 95% C: 8.84 9.79
0.20 2AS Mean: 13.77 SD1 9.34 95% CI 13.19 14.34 'AS Mean 10.08 SD 7.37 95% C: 9.62 10.53
0.10 YAS Mean: 15.16 SD: 9.55 95% CI: 14.57 15.75 ý7AS Mean: 11.21 SD: 8.33 95% CIL 10.69 11.73

0.0001 JAS Mean: 17.16 SD: 10.53 95% CI: 16.51 17.81 1 ]AS Mean: 12.42 SD: 8.69 95% CI: 11.88 12.96

Table All displays the statistical summaries of simulation output for the time awaiting replacement

components as a result of 1,250 missions (5,000 flight hours) while varying PoH when Pc, is 0.99 and the mean

time until the replacement component arrives is 10 days. The parameters of the beta distribution are aB=2 5 and

j 6 B=. 2 5 ; the parameters of the Weibull distribution are aw =l.5 and fi/=l 1.08. The time until a replacement

component arrives has an exponential distribution. This is data for Figure 15.

Table A ll

PC__ ___ LEGACY PROCESS CBM+ PROCESS ___

0.9999 JAS Mean: 0.00 SD: 0.12 95% CI: 0.00 0.01 JAS Mean: 0.00 SD: 0.00 95% CI 0.00 0.00
0.90 JAS Mean: 9.44 SD: 13.44 95% CI: 8.60 10.27 JAS Mean: 6.67 SD: 11.20 95% CI 5.98 7.36
0.80 JAS Mean: 17.45 SD: 19.30 95% CI: 16.25 18.64 JAS Mean: 12.49 SD: 14.44 95% CI 11.59 13.38
0.70 JAS Mean: 27.42 SD: 23.59 95% CI: 25.95 28.88 JAS Mean: 19.50 SD: 18.93 95% CI 18.33 20.67
0.60 JAS Mean: 36.92 SD: 27.18 95% CI: 35.23 38.60 JAS Mean: 25.90 SD: 23.77 95% CI 24.43 27.37
0.50 JAS Mean: 42.93 SD: 29.17 95% CI: 41.12 44.74 JAS Mean: 33.20 SD: 25.91 95% CI 31.60 34.81
0.40 1 AS Mean: 53.36 SD: 33.14 95% CI: 51.30 55.41 1 ]AS Mean: 40.31 SD: 29.13 95% CI 38.51 42.12
0.30 JAS Mean: 64.97 SD: 36.21 95% CI: 62.72 67.21 1]AS Mean: 46.02 SD: 31.59 95% CL 44.06 47.98
0.20 JAS Mean: 73.09 SD: 38.88 95% CI: 70.68 75.50 AS Mean: 52.48 SD: 31.03 95% CI: 50.55 54.40

0.10 JAS Mean: 80.22 SD: 40.80 95% CI: 77.69 82.75 ]AS Mean: 60.02 SD: 34.32 95% CI 57.90 62.15
0.0001 TAS Mean: 88.67 SD: 41.58 95% CI: 86.09 91.25 1 AS Mean: 63.91 SD: 34.87 95% CI: 61.75 66.07

Table A12 displays the statistical summaries of simulation output for the time awaiting replacement

components as a result of 1,250 missions (5,000 flight hours) while varying PoH when Pc, is 0.50 and the mean

time until the replacement component arrives is 10 days. The parameters of the beta distribution are aB=2 5 and

j 6 B= 2 5 ; the parameters of the Weibull distribution are ay=1.5 and ,6 w=l 1.08. The time until a replacement

component arrives has an exponential distribution. This is data for Figure 16.

Table A 12

Pon_ HAND _ LEGACY PROCESS CBM+ PROCESS ______

0.9999 JAS Mean: 0.01 SD: 0.13 95% CI: 0.00 0.01 JAS Mean: 0.00 SD: 0.00 95% CI 0.00 0.00
0.90 JAS Mean: 9.48 SD: 13.96 95% CI: 8.61 10.34 JAS Mean: 7.47 SD: 12.05 95% CI 6.73 8.22
0.80 JAS Mean: 17.40 SD: 17.80 95% CI: 16.30 18.50 JAS Mean: 14.60 SD: 17.07 95% CI 13.54 15.66
0.70 JAS Mean: 27.14 SD: 24.12 95% CI: 25.65 28.63 JAS Mean: 21.73 SD: 21.52 95% CI 20.39 23.06
0.60 JAS Mean: 36.32 SD: 26.46 95% CI: 34.68 37.96 JAS Mean: 27.52 SD: 23.12 95% CI 26.08 28.95
0.50 JAS Mean: 46.22 SD: 30.29 95% CI: 44.34 48.10 JAS Mean: 35.94 SD: 25.66 95% CI 34.35 37.53
0.40 1 AS Mean: 54.79 SD: 33.17 95% CI: 52.73 56.85 JAS Mean: 43.21 SD: 30.15 95% CI 41.35 45.08
0.30 JAS Mean: 63.01 SD: 35.55 95% CI: 60.80 65.21 1 ]AS Mean: 51.58 SD: 31.18 95% CL 49.65 53.51
0.20 JAS Mean: 72.70 SD: 38.17 95% CI: 70.34 75.07 ]AS Mean: 57.41 SD: 33.00 95% C: 55.37 59.46
0.10 JAS Mean: 81.96 SD: 39.36 95% CI: 79.52 84.40 ]AS Mean: 65.56 SD: 36.87 95% CI 63.28 67.85

0.0001 JAS Mean: 89.19 SD: 42.49 95% CI: 86.56 91.83 1 ]AS Mean: 71.63 SD: 38.87 95% CI: 69.22 74.04

Table A13 displays the statistical summaries of simulation output for the time awaiting replacement

components as a result of 1,250 missions (5,000 flight hours) while varying POH when P(, is 0.20 and the mean
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time until the replacement component arrives is 10 days. The parameters of the beta distribution are aB= 2 5 and

,GB=1 0 0 ; the parameters of the Weibull distribution are af=1.5 and f,6 =l 1.08. The time until a replacement

component arrives has an exponential distribution. This is data for Figure 17.

Table A 13

Pon ANDLEGACY PROCESS CBM+ PROCESS
0.9999 YAS Mean: 0.00 SD: 0.04 95% CI: 0.00 0.00 YAS Mean: 0.00 SD: 0.00 95% CI 0.00 0.00
0.90 JAS Mean: 9.34 SD: 13.18 95% CI: 8.53 10.16 JAS Mean: 8.54 SD: 12.64 95% CI 7.76 9.33
0.80 JAS Mean: 18.52 SD: 20.35 95% CI: 17.25 19.78 JAS Mean: 15.59 SD: 17.45 95% CI 14.51 16.67
0.70 JAS Mean: 27.17 SD: 23.59 95% CI: 25.70 28.63 JAS Mean: 24.82 SD: 22.59 95% CI 23.42 26.22
0.60 JAS Mean: 35.22 SD: 26.04 95% CI: 33.60 36.83 JAS Mean: 33.89 SD: 26.58 95% CI 32.24 35.54
0.50 JAS Mean: 44.64 SD: 29.66 95% CI: 42.80 46.47 JAS Mean: 41.84 SD: 29.17 95% CI 40.03 43.64
0.40 1 AS Mean: 55.17 SD: 33.73 95% CI: 53.08 57.26 1 AS Mean: 50.15 SD: 31.35 95% CI: 48.21 52.10
0.30 JAS Mean: 64.12 SD: 35.57 95% CI: 61.92 66.33 JAS Mean: 59.46 SD: 34.52 95% CI: 57.32 61.60
0.20 TAS Mean: 72.38 SD: 37.69 95% CI: 70.04 74.71 YAS Mean: 67.09 SD: 37.19 95% CI 64.78 69.39
0.10 JAS Mean: 81.59 SD: 40.41 95% CI: 79.09 84.10 1 AS Mean: 73.96 SD: 36.69 95% CI 71.68 76.23

0.0001 JAS Mean: 89.03 SD: 41.85 95% CI: 86.44 91.62 1 AS Mean: 81.51 SD: 40.35 95% CL: 79.01 84.01

123



REFERENCES

AMCOM, [https://redstoneappsrv 1.redstone.army.mil/cbm/cbm_home], January 2006.

Bickel, Peter J., Doksum, Kjell A., Mathematical Statistics: Basic Ideas and Selected

Topics, Holden-Day Inc., 1977.

Brown, Robert, Condition Based Maintenance (CBM) Proof of Principle, 30 June 2005.

Crowder, M. J., Kimber A. C., Smith R. L., Sweeting T. J., Statistical Analysis of

Reliability Data, Chapman & Hall, New York 1991.

Decisioneering Incorporated, Crystal Ball 7.2 Reference Manual, 2005.

Department of the Army, Army Aviation Condition Based Maintenance Plus (CBM+)

Plan, 29 NOV 2004.

Department of the Army, TM 1-1520-237-10 OPERATOR'S MANUAL FOR UH-60A

HELICOPTER, UH-60L HELICOPTER, EH-60A HELICOPTER, 1 May 2003.

Department of the Army, TM 1-1520-240-10 OPERATOR'S MANUAL FOR ARMY CH-

47D HELICOPTER, 31 January 2003.

Department of the Army, TM 1-1520-251-10 OPERATOR'S MANUAL FOR

HELICOPTER, ATTACK, AH-64D LONGBOWAPACHE, 29 March 2002.

Department of Defense, [http://akss.dau.mil/dag/Guidebook/IGc5.2.1.2.asp], May 2006.

Department of Defense, Defense Acquisition Handbook, 20 December 2004.

Department of Defense Instruction 5000.2, Operation of the Defense Acquisition System,

12 May 2003.

Gaver, Donald P. Jr, Jacobs, Patricia. A, A Nonhomogeneous Poisson Process Model for

CBM, Working paper, 29 March 2006.

Hughes, Wayne P., Military Modeling for Decision Making, Third Edition, The Military

Operations Research Society Inc., 1997.

Jacobs, Patricia A., A Nonhomogeneous Poisson process model (NHPP) for engine data,

Working paper, 27 March 2006.

124



McCullough, B.D., Wilson B., On the accuracy of statistical procedures in Microsoft

Excel 2003, Computational Statistics & Data Analysis (CSDA), Volume 49, 2005.

Mobley, R. Keith, An Introduction to Predictive Maintenance, First Edition, Van

Nostrand Reinhold, 1990.

Moubray, John, Reliability-centered Maintenance, Second Edition, Industrial Press Inc.,

1997.

Pew, Richard W., Mayor, Anne S., Modeling Human and Organizational Behavior-

Applications to Military Simulations, First Edition, National Academy Press, 1998.

Ragsdale, Cliff T., Spreadsheet Modeling & Decision Analysis: A Practical Introduction

to Management Science, Fourth Edition, Thomson South-Western, 2004.

Ross, Sheldon M., Introduction to Probability Models, Eighth Edition, Academic Press,

2003.

Wright, Johnny, Emerging Results Using IMD-HUMS) in a Black Hawk Assault Battalion,

2005.

125



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Patricia A. Jacobs
Department of Operations Research
Monterey, California
pajacobs@nps.edu

4. Professor Donald P. Gaver, Jr.
Department of Operations Research
Monterey, California
dgaver@nps.edu

5. Lieutenant Colonel Simon Goerger
Director, Operations Research Center for Excellence
West Point, New York

6. Robert Brown
G3, U.S. Army Aviation and Missile Command
Huntsville, Alabama

7. Dr. Ernest Seglie
Office of the Secretary of Defense
Operational Test and Evaluation Directorate
Washington, D.C.
Emest.seglie@osd.mil

126



Exhibit 3: Driving Toward Greater Mutual Understanding

Condition-Based Maintenance (CBM)
For U.S. Army Aviation:

A Component Selection Methodology

INFORMS Conference
San Francisco, California

14 November 2005

MAJ Ernest Wong
Department of Systems Engineering

United States Military Academy

Types of Maintenance Paradigms

* Run-to-Failure Maintenance
- Corrective Maintenance
- "Driveway Diagnostics"

- Reactive

• Time-Phased Maintenance
- Preventative Maintenance

- Calendar-Based
- Proactive

• Condition-Based Maintenance
- Predictive Prognostics

- Non-invasive
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The CBM Process

oImbedded Sensors d ltIsSlir ntMitnnePouto

E Data WarehouseJ S

o EngineerngnAnaaysi

inCstructiose Lo Dnfo Sys

Ary eAi a ti

Key Enablers: to Peci R a in Life
Embedde d Sensors

Data Warehouse
SEngineering Analysis

0 Closed Loop Info System =

High Confidence From Users
-icaf nSouSpce: U.SH ADaCOM

STo te AArmy AvsaC on's Take on CBM

-A Set of Pracivtnne Mantnacese acins aaiiisTa mrv prtoa

Enhaning ( Diagnostics
- Evolving( to_ Predic ting Remaining Component Life
- Culm-inai.ting into, Proactive Supply Transactions

DeBased ron Near-realStutiona Awareess (ent&Aalth) s of Eqipeta Crondiio

- Embedded Sensors-Platform Maintenance Environments

- Aircraft and Supply Historical Data

* To the Army Leadership, CBM Is:
- A Set of Proactive Maintenance Actions
- Based on Near-real Situational Awareness (Health) of Equipment Condition

-Obtained From Embedded Sensors and Other Sour ces
-Based on Evidence of Need Rather Than Scheduled Time Peri ods

•To Battlefield Commanders, CBM Is:
- The Ability to Meet Mission Requirements With Proactively Driven Maintenance

- The Ability to Optimize the Competing Demands of Warfighting and Planned Maintenance

* To the Soldier, CBM Is:
- Maintenance Instructions Based on Actual Condition and Usage
- Greatly Enhanced Diagnostics and Troubleshooting
- Reduced Maintainer Workload
- Reduced or Eliminated Physical Inspections Source: U.S AMCOM
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o ~ Army Aviation's CBM Vision ¢

• Decrease the Maintenance Burden on the Soldier

• Increase Platform Availability and Readiness

• Reduce Operations & Support Costs

Maintenance
Maintenance 'CBM Proof Of Principle Efficient

Intensive -Automated Inspection
F bInspections d emonsa - Continual Monitoring

I cS e o- Reduced Maintenance

* Phases -Gradual Extension Betwee Inspections

•TBOs InspectionslMaintenance Ac Predictive & Proactive

• Reactive -Install DiagnosticlProgno Progressive Improvement

• Unscheduled Equipment on Platforms Fully integrated LCM
-Develop Enablers Business Process Change

Proactive Supply
Source: US AMCOM

Timeline for CBM Implementation •

• Phase 1 - Concept Development - FY 05-07
- Proof of Principle - Engineering Analysis, July 2005
- Cross Functional Data Warehouse Development for Analysis
- Development of Diagnostics/Prognostic Algorithms
- Assess DOTMLPF Impacts & Potential Business Process Improvements
- Interoperability/Interfaces With GCSS-A. CLOE. PME. LMP, PLM+

• Phase 2 - Implementation - FY 08-15
- Battalion and/or Brigade Pilot Implementation
- Modify Business Processes: Forecasting, Other Supply Chain niaiives
- Identify/Implement Training/Doctrine/Publication Changes
- Implementation of CBM on Aircraft With DSCs
- Examine New Technologies

• Phase 3 - Operations & Process Improvements - FY 16+
- Sustain CBM Operations
- Continuous Analysis of Data
- Refinement of Prognostic Capability
- Reassess DOTLMLPF and Business Processes

Source: US AMCOM
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oRealized Benefits of CBM

Aviation Engineering Directorate Published Airworthiness Releases
(as of 16JUN05) affecting approximately 100 aircraft

SYSTEM ITEM BENEFITS
AH-64 MIR Eliminates 50 hr bearing inspection (btw 1750 and 2250 hrs).

Swashplate Eliminates maintenance operational check (approximately 1 hr).
MMH saved per inspection: 7.4 hrs.
Downtime saved per aircraft: 5.9 hrs.

AH-64 APU Clutch Eliminates vibration checks at installation and phase.
Extends APU mount inspection from 250 hrs to 500 hrs.
MMH saved per inspection: 28.0 hrs.
Downtime saved per aircraft: 9.0 hrs.

AH-64 Aft Hanger Safety improvement wt continuous diagnostic monitoring.
Bearing Extends TBO from 2500 hrs to 2750 hrs.

MMH saved per inspection: 4.4 hrs.
Downtime saved per aircraft:2.2 hrs. I

AH-64 Fwd Hanger Safety improvement wt continuous diagnostic monitoring.
Bearing Extends TBO from 2500 hrs to 2750 hrs.

MMH saved per inspection: 4.4 hrs.
Downtime saved per aircraft:2.2 hrs.

UH-60 Oil Cooler Axial Eliminates 120 hr inspection wI continuous diagnostic monitoring.
Fan Bearing Extends TBO from 2500 hrs to 3000 hrs.

UH-60 Engine Output Eliminates AVA installation requirement for 120 hr inspection.
Drive Shaft Replace wt continuous diagnostic monitoring.

MMH saved per inspection: 3.3 hrs.
Downtime saved per aircraft:1.8 hrs.

Source: U.S. AMCOM

Maintenance Paradigm Attributes

1. Component contribution to vehicle's critical functions. How will this
component's degradation impact the mission? How will it impact
safety? How much downtime must the vehicle endure in order for
the component to be repaired or replaced? What is the likelihood of
catastrophic failure associated with this part?

2. Component overall cost. This is more than just the simple cost
accounting figure for the component-also included are costs
associated with the time it takes to replace the part, shortage costs,
and inventory costs.

3. Complexity of the component. Will it be feasible to determine the
condition of a particular component? Is it reasonable to expect that
this part's condition can be isolated from extraneous noise?

4. Technological capability to monitor component condition (vibrations,
temperature, electronics, etc.). Is there a history of monitoring and
assessing the particular component or a similar component's status?
Is the monitoring likely to result in data that generates enough
fidelity to determine component degradation?
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- Maintenance Paradigm Calculation

One function for each
• Process steps include attribute

- Select A, 10

- Select w
- Assign A, to attributes 1-4 Value -------

• To calculate MP
- Find the score for an attribute
- Convert the score to a value
- Sum the weight of each attribute

multiplied by the value for each
attribute _

- MPI= =1 w, V(A ),max MP of 10 0 Score

(component's value)

, MP Attribute Relative Importance :•

High Need to
Monitor C mpo nt Critcality

Component

0v all Componenit Cos
Technological

Advances will o ent ComplexityAdjust - "

sTechlogi l Capability"-x•'•• s•'• Low •__

Hard Relative Ease in

Monitoring Component

Easy to Monitor Hard Difficult
Bearings
Drive Shafts I o
Dynamic Components P

--From U.S. AMCOM Pamphlet OCT05
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IMP Attribute Relative Importance 4'.2
High Need to

Monitor
Component

Scientiian

" Technological

Advances will \ IAdjust - -•

ition ologic Capability
\ • ~Low _ ___

Hard Relative Ease in
Monitoring Component

Attribute weighting depends largely on scientific and technologicalcapabilities th at enable more robust CBM sensors and aloihs. ' ,

,Currently, more importance placed on component complexity and ja•
technological capability.

•Shift toward greater emphasis on component criticality and overall~r,•
component cost will provide a more top~down systematic approach.

• , "'MP Component Categorization '

MPi = iwi V(A), max MP of 10

0.00 3.33 6.67 10.00

Maintenance Paradigm (MP) Value
* Derived/Ancillary
* Platform/Core
S Breakthrough

132



Further Research

* Developers and First Users
- NASA
- DOD

* Mainstream Adopters
- Auto Manufacturers
- Commercial Aviation
- Utilities and Power Plants
- Hospitals and Medical Device Manufacturers

New Innovators
- Electronics
- Networks
- Materials
- Environment & Ecology
- Sports Medicine
- NASCAR

0 : Viability of This Methodology

* U.S. Army Aviation
- UIH-60

- AH-64

- CH-47

* Future Combat System (FCS) r

* Joint Strike Fighter
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Exhibit 4: Researching Common Areas of Interest

White Paper 27 February 2006
Operations Research Center of Excellence Major Ernest Wong
Department of Systems Engineering U.S. Army
United States Military Academy ernest.wong@usma.edu
West Point, NY 10996

Defining Appropriate Metrics for

Operating Within a Condition-Based Maintenance Paradigm

"The victorious army first realizes the conditions for victory, and then seeks to engage in battle. The vanquished

army fights first and then seeks victory."

--Sun Tsu, The Art of War

Executive Summary

Without clear objectives, it is oftentimes difficult to make good decisions. To come up

with clear objectives, organizations must first determine what is important and then figure out a

way to assess and evaluate how well they are able to perform with respect to what is important

[7]. As the familiar saying goes, "What gets measured, gets done." Metrics, therefore, play a

critical role in organizational performance, and leaders today are very concerned about exactly

what is measured [5]. Regardless of the type, size, or function of the organization, good metrics

help to drive systemic improvement and are usually [1]:

* Few in number to allow concentration on those vital key variables
* Linked to key business drivers to promote organizational success
* Composed of a mix of past, present, and future to achieve a holistic perspective
* Based around needs of customers, shareholders, and key stakeholders
* Driven from the top and permeated throughout all levels of the organization
* Composed of multiple indices to give a better overall assessment
* Flexible and adaptable to changes in environment and strategy
* Based on targets or goals established through research rather than arbitrary numbers

Most organizations spend countless hours collecting and interpreting data intended to

enhance business performance and productivity. Yet a large portion of this time amounts to
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nothing more than wasted effort when the wrong measurements are analyzed. As a result,

organizations tend to create unnecessary procedures, squander resources, and detract from their

objectives when this happens. Of greater consequence, however, is that wrong metrics

oftentimes lead organizations to inaccurate decision-making which, in turn, translates into poor

choices. This paper examines how organizations can ensure that they are focused on a set of

appropriate metrics that are linked to critical success factors, such as:

* Higher quality manufacturing through reduced costly mistakes
* Reduced risk and improved safety
* Increased operational efficiency and usage
* Extended equipment life and reduced lifecycle costs
* Increased savings in personnel training costs
* Improved employee satisfaction
* Increased confidence in major decisions

Developing appropriate metrics to evaluate the performance of the condition-based

maintenance (CBM) paradigm for U.S. Army aviation is critical not just as a means to assess the

progress of the program, but also as a means to help continually improve upon the CBM vision

of achieving optimal operational readiness of the aviation fleet. DoD Directive 5000.1

articulates some of the critical success factors for CBM [4]:

* Predict equipment failures based on real-time or near real-time assessments of
equipment condition obtained from embedded sensors

* Reduce maintenance down time
* Increase operational readiness by repairing or replacing system components based on

actual condition of components rather than on a scheduled or time-phased basis

Accordingly, metrics developed for CBM must relate to factors such as these. A good way to

help ensure that the metrics are meaningful is to make sure the chosen measurements are

SMART--specific, measurable, aligned, realistic, and time-bound [6].

Introduction-A Shift to More Meaningful Metrics

For every objective, there ought to be at least one quantifiable metric and a target value

for that metric. Once the objective-level target for a metric has been reached, the organization
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knows that a particular objective has been achieved. Unfortunately, most organizations try to

measure too many things, measure the wrong things, use measures that no longer have relevance,

or use measures that are ambiguous and give managers and workers little control [6]. When this

occurs, a great deal of organizational time, energy, and resources are wasted.

Michael Dell, CEO of Dell Computers, has stated, "To motivate an employee to think

like an owner, you have to give her metrics she can embrace" [3]. SMART metrics-those that

are specific, measurable, aligned to key objectives, realistic, and time-bound (attainable within a

certain time period)-are a key element of a performance management system that helps link

employees to the success of the organization (Fig. 1).

r ,
Ae

Figure 1: Aligning Organizational and Individual Goals [6]

However, most traditional performance management systems provide "lagging" rather
than "leading" indicators. They tend to be more lik rearview mirrors that explain how goals

were or were not met based on past performance rather than being more like steering wheels that

enable organizations to adjust to changing conditions [5]. In today's more measure-based, goals-
driven, performance management culture, improved metrics must be developed to better align

efforts, implement strategies, and focus on results (Fig. 2). Organizations that make a concerted

effort to shift to metrics that are multidimensional, permit mid-course steering, create value,

display line of sight to action, enhance strategy, facilitate management across multiple functions,

and assist in the management of output value are much more likely to find themselves to be the

leaders in this new century. The shift to more meaningful metrics will lead to the advancement

of purposeful organizations that succeed at effectively and efficiently getting things done right.
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